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ABSTRACT: New platforms for the rapid and sensitive detection of
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants
of concern are urgently needed. Here we report the development of a
nanomechanical sensor based on the deflection of a microcantilever
capable of detecting the SARS-CoV-2 spike (S) glycoprotein antigen
using computationally designed multivalent minibinders immobilized on
a microcantilever surface. The sensor exhibits rapid (<5 min) detection
of the target antigens down to concentrations of 0.05 ng/mL (362 fM)
and is more than an order of magnitude more sensitive than an antibody-based cantilever sensor. Validation of the sensor with
clinical samples from 33 patients, including 9 patients infected with the Omicron (BA.1) variant observed detection of antigen from
nasopharyngeal swabs with cycle threshold (Ct) values as high as 39, suggesting a limit of detection similar to that of the quantitative
reverse transcription polymerase chain reaction (RT-qPCR). Our findings demonstrate the use of minibinders and nanomechanical
sensors for the rapid and sensitive detection of SARS-CoV-2 and potentially other disease markers.

The coronavirus disease 2019 (COVID-19) pandemic
caused by severe acute respiratory syndrome coronavirus

2 (SARS-CoV-2) has highlighted the importance and need for
the rapid and accurate detection of pathogens for disease
identification and pandemic mitigation. The gold standard
techniques for the identification of viral pathogens are the
detection of viral nucleic acid by quantitative reverse
transcription polymerase chain reaction (RT-qPCR) or viral
antigen detection through lateral flow immunoassays (LFIA).1

RT-qPCR based techniques are highly sensitive but are
relatively expensive, take hours to days to get results, and
require a centralized laboratory with trained technicians.2

LFIAs, frequently called rapid antigen tests, are cheaper, faster,
useful in point-of-care settings2 and have shown beneficial
impact on population-level disease spread in widespread
testing campaigns.3,4 However, SARS-CoV-2 LFIAs have
moderate to low sensitivities at viral loads below 107 RNA
copies per mL,5,6 which does not cover the range of viral loads
where infected individuals transmit the virus,4,5,7,8 an issue
during the emergence of the B.1.1.529 (Omicron) variant of
concern.9−11 It is clear there remains a need for viral detection
approaches that are rapid, sensitive, and clinically useful in
point-of-care settings.
Toward addressing this need, we previously designed a

nanomechanical microcantilever sensor platform that enables
rapid and sensitive detection of SARS-CoV-2 N protein
antigen at clinically relevant concentrations in patient

samples.12 Microcantilevers (Figure S1) are promising for
disease diagnostics due to their rapid and sensitive detection of
biomolecules and potential for point-of-care use.13−15 Binding
on the receptor-functionalized microcantilever results in
surface stress that causes physical bending of the cantilever,16

which can be measured optically12 or electronically17 (Figure
1a). Monoclonal antibodies are traditionally used for mediating
specific binding of the target antigen of choice to the cantilever
surface. However, they are typically nonspecifically labeled,
resulting in randomly oriented proteins on the cantilever
surface,12 and they are sensitive to mutations in their target
epitope and antigenic drift.18

As an alternative to antibodies, we recently developed
multivalent minibinders, small, computationally designed
binding proteins, targeting the SARS-CoV-2 S glycoprotein
trimer.19,20 The TRI2-2 multivalent minibinder, a trivalent
version of the monovalent AHB219 minibinder, simultaneously
engages all three RBDs on a single S trimer and exhibits tight
binding to all tested SARS-CoV-2 variants.20 The minibinders
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are small (5−15× smaller than an antibody) and can be site
specifically functionalized with a cysteine residue to enable
oriented and high density immobilization on sensor
surfaces.21,22

In this work, we evaluated the performance of microcanti-
lever sensors functionalized with the monovalent AHB2 and
trivalent TRI2-2 minibinders,19,20 which have not been
previously evaluated as sensors, for the detection of SARS-
CoV-2 S antigen. We functionalized gold-coated microcanti-
lever sensors with minibinders containing C-terminal cysteine
residues, produced via cell-free protein synthesis,23−25 and
compared them to an antibody based sensor. The multivalent
minibinder sensor exhibited a limit of detection (LOD) more
than an order of magnitude better than that of the antibody-
based sensor. Furthermore, using these sensors we observed
rapid (<5 min) and sensitive detection (<0.05 ng/mL) of
purified SARS-CoV-2 antigens from SARS-COV-2 variants of
concern as well as detection of SARS-CoV-2 in patient
nasopharyngeal swabs. S antigen is detected at a concentration
corresponding to 96 genome copies per mL, indicating the
sensor has an LOD on-par with RT-qPCR-based tests.26 The
developed technology is a promising diagnostic platform.
We first compared the response of cantilevers functionalized

with antibody, monomeric minibinder AHB2, and trimeric
minibinder TRI2-2 to detect the Wuhan-Hu-1 SARS-CoV-2
prefusion stabilized hexapro spike protein (S6P) (Figure 1).27

Cantilever measurements were conducted in a small micro-
fluidic chamber and deflection was monitored using an optical
liquid atomic force microscopy (AFM) setup. Cantilevers were
functionalized with the desired binder and then incubated with
different concentrations of analytes in the sample chamber and
monitored for 15 min. For all binders, the concentration of the
S6P analyte exhibited a log−linear relationship with deflection,
and the system reached equilibrium after approximately 10 min
of incubation (Figure 1b−d). Replicates were highly
concordant and exhibited low standard deviations (Figure

S2, mean standard deviation = 0.64 nm). TRI2-2 cantilevers
exhibited more sensitive detection than either AHB2 or the
antibody-functionalized cantilevers by more than an order of
magnitude (Figure 1e). At the lowest tested concentration of
S6P (0.05 ng/mL or 362 fM) TRI2-2 exhibited signal
significantly different from the negative control after 4 min
(p = 0.032, 2-way ANOVA with Sidak’s multiple comparisons
test) (Figure 1d). The observed difference in response with the
TRI2-2 cantilevers is likely due to the high avidity (it engages
all three RBDs within an S trimer simultaneously).20 When
compared to the antibody cantilevers, the improvement may
also be influenced by a greater immobilization density on the
cantilever. This result indicates that TRI2-2 functionalized
cantilevers are suitable sensors for the SARS-CoV-2 S trimer
antigen.
We next evaluated the ability of TRI2-2 cantilevers to sense

S trimer corresponding to the Alpha (B.1.1.7), Beta (B.1.351),
Gamma (P.1), Delta (B.1.617.2), and Omicron (BA.1)
variants of concern (Figure 2, Figure S3). We observed
successful detection of 0.05 ng/mL for the Alpha, Gamma,

Figure 1. Cantilever-based sensing of SARS-CoV-2 spike protein (S6P). (a) Cantilever sensing mechanism; deflection is observed upon binding of
the SARS-CoV-2 spike trimer to the captured binder immobilized on the cantilever. (b−d) Deflection of cantilever sensors over time with anti-S
antibody (b), AHB2 (c), and TRI2-2 (d) immobilized on the cantilever (mean ± SEM, n = 3). (e) Comparison of deflection between antibody,
AHB2, and TRI2-2 cantilevers after 15 min of equilibration (mean ± SEM, n = 3). For all plots, the dashed horizontal line indicates the deflection
LOD cutoff (average of the combined negative control measurements ±3 standard deviations) and an absence of error bars indicates error within
the marker.

Figure 2. Detection of purified S trimer representing current and
historical SARS-CoV-2 variants of concern. Cantilever deflection after
15 min of equilibration (mean ± SEM, n = 3). The dashed horizontal
line indicates the deflection LOD cutoff (average of the combined
negative control measurements ± 3 standard deviations), and an
absence of error bars indicates error within the marker.
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Delta, and Omicron S trimer and 0.1 ng/mL of the Beta S
trimer, with the deflection crossing the limit of detection cutoff
around 5 min at the lowest detectable concentration (Figure
S3a−e). We observed varying levels of deflection for the
different S trimer variants (Figure 2), possibly due to
heterogeneity in the different preparations of recombinant S
trimer. These measurements demonstrate the ability of TRI2-2
functionalized cantilevers to detect antigens from different
SARS-CoV-2 variants of concern.
Given the highly sensitive detection of purified S trimer, we

next sought to determine if TRI2-2 functionalized cantilevers
could be utilized to detect SARS-CoV-2 in patient samples.
Residual diagnostic nasopharyngeal swabs were collected from
patients presenting to Northwestern Memorial Hospital
between March of 2021 and January of 2022. Cycle threshold
(Ct) values were calculated by quantitative reverse tran-
scription and PCR (RT-qPCR) as a proxy for SARS-CoV-2
viral load. The genotype of the virus in each sample was
determined by whole-genome sequencing using the ARTIC
protocol. Pango lineages were assigned to the consensus
sequences using pangolin software to assign variant desig-
nations. Specimens that tested negative for SARS-CoV-2 or
positive for another respiratory virus (influenza A virus) were
used as negative controls.
We tested 27 RT-qPCR positive and 5 RT-qPCR negative

patient samples (Table S1), including samples from early in
2021, samples from confirmed Alpha (B.1.1.7) variant
infections, and samples from confirmed Omicron (BA.1)
variant infections (Figure 3a, Figure S4a−c). A linear

relationship was observed between the Ct value measured by
RT-qPCR and cantilever deflection (Figure 3a) and thus a
log−linear relationship with viral RNA copy number (Table
S2). Consistent with the results using purified antigen, patient
samples exhibited detection after approximately 5 min of
incubation of the sample with the sensor. For the lowest Ct
value sample tested (Ct = 39), we observed signal significantly
different from all negative patient samples (Figure S4a) at 7
min (p < 0.05, 2-way ANOVA with Sidak’s multiple

comparisons test), indicating confident detection of antigen
concentration corresponding to 96 viral RNA copies per mL
(Table S2). SARS-CoV-2 RT-qPCR negative samples from five
patients exhibited little deflection (Figure 3a), comparable to
the buffer negative control (Figure 1d). To probe the cross
reactivity of our sensor, we tested an RT-qPCR positive
influenza A sample and recombinant purified spike proteins
from other human coronaviruses and observed little deflection
at a concentration of 1 000 ng/mL (Figure 3b, Figure S4e),
with only HCoV-HKU1 exhibiting limited signal above the
average background deflection (within 6 standard deviations).
These results indicate our sensor does not have significant
cross-reactivity for these tested viruses.
Here, we have used a multivalent minibinder functionalized

nanomechanical sensor to detect the S trimer antigen from
different SARS-CoV-2 variants of concern. Our sensor can
detect femtomolar concentrations of antigen and our data for
patient samples suggest an LOD that is comparable to nucleic
acid tests with amplification26 and >2 orders of magnitude
better than currently authorized rapid antigen tests.5,8,10 The
sensor does not require amplification and shows results in
patient samples in 5 min. Taken together, these benefits
indicate that the developed sensor has promise as a clinical
diagnostic, although more samples must be evaluated to
determine clinical sensitivity and specificity.28 Using an
alternative detection modality like a metal-oxide semi-
conductor field-effect transistor (MOSFET) detector for
electronic readout in a hand-held device could make it
accessible in point-of-care settings.17 Computationally de-
signed binding proteins and nanomechanical sensors will
enable fast and sensitive detection of biomarkers for disease
diagnosis for SARS-CoV-2 and other diseases.
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