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Abstract

Industrial biotechnology is a rapidly growing field. With the increasing shift

towards a bio-based economy, there is rising demand for developing efficient cell

factories that can produce fuels, chemicals, pharmaceuticals, materials, nutraceu-

ticals, and even food ingredients. The yeast Saccharomyces cerevisiae is extremely

well suited for this objective. As one of the most intensely studied eukaryotic

model organisms, a rich density of knowledge detailing its genetics, biochemistry,

physiology, and large-scale fermentation performance can be capitalized upon to

enable a substantial increase in the industrial application of this yeast. Develop-

ments in genomics and high-throughput systems biology tools are enhancing one’s

ability to rapidly characterize cellular behaviour, which is valuable in the field of

metabolic engineering where strain characterization is often the bottleneck in

strain development programmes. Here, the impact of systems biology on meta-

bolic engineering is reviewed and perspectives on the role of systems biology in the

design of cell factories are given.

Introduction

The yeast Saccharomyces cerevisiae serves as a very important

model organism for studying the molecular mechanisms

underlying complex diseases like cancer, diabetes, and

various metabolic disorders. For this reason, genome se-

quencing was undertaken at an early stage. Chromosome III

of S. cerevisiae was the first complete chromosome to be

sequenced for any organism (Oliver et al., 1992), and the

completion of the entire genome sequence in 1996 repre-

sented the first available genome for any eukaryote (Goffeau

et al., 1996). Because the genomic source code only provides

an inventory of parts, functional genomics tools have also

been developed using this yeast as a vehicle for observing

and quantifying cellular behaviour. These tools include:

transcriptome analysis (Lashkari et al., 1997), proteome

analysis (Zhu et al., 2001), metabolome analysis (Villas Boas

et al., 2005a; Jewett et al., 2006), flux analysis (Sauer, 2006),

interactome analysis (Uetz et al., 2000; Lee et al., 2002;

Harbison et al., 2004), and locasome analysis (Huh et al.,

2003), among others. Complementing today’s systems biol-

ogy tools, extensive compendiums of high-throughput data

are available both from specific studies (Hughes et al., 2000)

and in databases (Table 1). The excessive amounts of data

available for S. cerevisiae, both at the global level and at the

molecular level, make this yeast well suited for a coordinated

effort in systems biology, where the objective is to obtain a

quantitative description of cellular processes, global map-

ping of all key quantitative interactions within the cell, and

ultimately, to predict how and why cells function the way

they do (Mustacchi et al., 2006).

As mentioned above, much of the development in the

field of genomics and systems biology of yeast is driven by

the use of this organism as a model for studying human

diseases or human pathogens. Saccharomyces cerevisiae is,

however, also a very important cell factory. While traditional

applications of this yeast include the production of beer,

spirits, wine, and bread, the advent of genetic engineering

and recombinant DNA (rDNA) technology allowed new

opportunities for exploiting S. cerevisiae for many compel-

ling bio-based applications. Today, for example, S. cerevisiae

is used for the commercial production of pharmaceutical

protein products like insulin, and several vaccines, including

hepatitis and papillomavirus. Looking forward, the use of

S. cerevisiae as a cell factory for the production of rDNA

proteins is likely to become even more important.
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Pioneering breakthroughs in engineering the yeast Pichia

pastoris to have human glycosylation pathways have enabled

the production of homogeneously glycosylated proteins at

high levels (Gerngross, 2005; Hamilton et al., 2006; Li et al.,

2006). It is expected that transferring this technology to

S. cerevisiae will enable recombinant glycoprotein produc-

tion at much lower costs and with higher efficacy, than cell

cultures that are conventionally used to express glycopro-

teins. This promises to expand the antibody market as well

as markets for other humanized glycoproteins that today can

only be produced at high costs. Another traditional applica-

tion of S. cerevisiae is the production of ethanol (often

referred to as bioethanol to distinguish it from ethanol being

produced from petrochemicals). The production of bioetha-

nol has experienced a dramatic increase in the last couple of

years. With increasing oil prices and for numerous geopoli-

tical reasons, there is financial, social, and political pressure

to increase the production of bioethanol to be used as a

renewable fuel. Besides the use of S. cerevisiae as a cell

factory for the production of biofuels, this organism has also

been exploited for the production of other chemicals like

organic acids, e.g. lactic acid (Porro et al., 1999; Ishida et al.,

2006) and pyruvate (van Maris et al., 2003), glycerol (Geert-

man et al., 2006), and more complex natural products, e.g.

isoprenoids (Yamano et al., 1994; Ro et al., 2006; Shiba et al.,

2006) and polyketides (Kealey et al., 1998; Mutka et al.,

2006; Wattanachaisaereekul et al., 2007). With these devel-

opments, the market value of products derived from

fermentations with S. cerevisiae is expected to increase

further in the future, and much above the general market

growth (see Fig. 1).

With the extensive fundamental research carried out on

S. cerevisiae and the substantial industrial interest in this

organism as a cell factory, it is obvious to consider the

exploitation of the solid knowledge base from genomics and

systems biology for future design of improved cell factories.

A major hurdle in this exploitation is, however, that many of

the high-throughput experimental techniques and bioinfor-

matics algorithms for analysis of these data are not well

suited for identification of the rather small adjustments that

might occur in metabolism during an industrial fermenta-

tion process, e.g. during a fed-batch process used for the

production of a recombinant protein. In this review, it will

be briefly discussed as to how some of the high-through

experimental techniques reported for analysis of yeast can be

used in the field of industrial biotechnology. First, however,

a definition of systems biology and metabolic engineering

will be given.

Systems biology

There are many definitions of systems biology, but most of

these contain elements such as mathematical modelling,

global analysis (or ome analysis), the whole system is more

beer, wine and bakers yeast Time

Market value of yeast
derived products

Today

recombinant proteins

bioethanol

other
chemicals

Fig. 1. Illustration of the growing market of yeast biotechnology. The

use of Saccharomyces cerevisiae for the production of recombinant

proteins is expected to grow substantially as more and more products

can be produced using yeast as an expression system. The bioethanol

market is expected to increase much beyond the current level. Yeast is

also expected to be exploited for the production of a wide range of other

chemicals in the future.

Table 1. Internet resources for yeast systems biology data

Database Website

Saccharomyces Genome Database http://www.yeastgenome.org/

Stanford MicroArray Database http://genome-www5.stanford.edu/

Yeast deletion project http://www-sequence.stanford.edu/group/yeast_deletion_project/data_sets.html

Transcriptional regulatory code of yeast http://web.wi.mit.edu/young/regulatory_code/

MIPS comprehensive yeast genome database http://mips.gsf.de/genre/proj/yeast/

Comprehensive systems biology database http://csbdb.mpimp-golm.mpg.de/

Proteome bioknowledge database http://www.proteome.com/control/tools/proteome

Yeast GFP fusion localization database http://yeastgfp.ucsf.edu/

Protein interaction database http://www.ebi.ac.uk/intact/site/index.jsf

General repository for interaction datasets http://www.thebiogrid.org/

Yeast search for transcriptional regulators and

consensus tracking

http://www.yeastract.com/

Cold Spring Harbor Laboratory www.reactome.org/

FEMS Yeast Res 8 (2008) 122–131 c� 2007 Federation of European Microbiological Societies
Published by Blackwell Publishing Ltd. All rights reserved

123Impact of systems biology on metabolic engineering

D
ow

nloaded from
 https://academ

ic.oup.com
/fem

syr/article/8/1/122/562415 by R
obert C

row
n Law

 Library user on 02 O
ctober 2024



than the sum of its parts, mapping of interactions between

cellular components, and quantification of dynamic re-

sponses in living cells (Ideker et al., 2001; Kitano, 2002;

Brent, 2004; Stephanopoulos et al., 2004; Kirschner, 2005;

Barrett et al., 2006; Bruggeman & Westerhoff, 2007). In most

cases, the objective of systems biology is to obtain a

quantitative description of the biological system under

study, and this quantitative description may be in the form

of a mathematical model. In some cases, the model may

be the final result of the study, i.e. the model captures key

features of the biological system and can hence be used to

predict the behaviour of the system under conditions

different from those used to derive the model. In other

cases, mathematical modelling rather serves as a tool to

extract information of the biological system, i.e. to enrich

the information content in the data. There is not necessarily

a conflict between the two, and generally, mathematical

modelling goes hand in hand with experimental work. This

partnership exemplifies the view of the essence of systems

biology: to obtain new insight into the molecular mechanisms

occurring in living cells or sub-systems of living cells for

predicting the function of biological systems through the

combination of mathematical modelling and experimental

biology. This does not say anything about the use of global

data, e.g. transcriptome or proteome data, and clearly there

are many systems biology studies that do not rely on global

data. Mathematical models have, however, been shown to be

particularly useful for analysis of global data, as the com-

plexity and integrative nature of biological systems makes it

difficult to extract information on molecular processes from

global data without the use of models as either scaffolds for

the analysis or for hypothesis driven analysis of the data.

From the above, it is clear that different mathematical

models play a central role in systems biology. The type of

model that one will use in a systems biology study will,

however, depend completely on the objective of the study.

Often, one distinguishes between top-down systems biology

and bottom-up systems biology (see Fig. 2). Top-down

systems biology is basically a data-driven process, where new

biological information is extracted from large data sets. The

models used in this kind of study can be soft models like

neural networks, graphs, or even statistical models. In many

cases, there is not a specific hypothesis and the analysis may

be rather inductive (Kell & Oliver, 2004), but often the initial

analysis leads to some kind of hypothesis that then leads to

establishment of a course model that is then evaluated against

the data. An excellent example of this kind of modelling is a

study on the yeast cell cycle, where de Lichtenberg et al.

Bottom Up

Top Down
Global analysis (omics)

Data analysis (bioinformatics)

Molecular interactions

Reduction of dimensionality

System description

Reaction/process kinetics

High level models

Low level models

Fig. 2. How top-down and bottom-up systems biology meet in terms of providing a quantitative description of a biological system. In the top-down

approach, high-throughput data are applied for identification of structures, connectivity, and possible information on the quantitative interaction

between different components. In the bottom-up approach, the system is reconstructed based on biological knowledge, e.g. on molecular interactions.
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(2005) found from analysis of various ome data that key

protein complexes are assembled during the cell cycle and not

all proteins within these complexes have a cyclic transcription

pattern. Bottom-up systems biology is, on the other hand,

based on the presence of very detailed knowledge, and this

knowledge is then translated into a mathematical formulation

that is then used to simulate the behaviour of the system.

Generally there is not enough knowledge available to build

detailed mechanistic models, and an important element of

bottom-up systems biology is therefore an evaluation of

different model structures. Very good examples of bottom-

up systems biology include detailed modelling of metabolic

pathways in yeast (Mauch et al., 2000; Müller, 2006), the High

Osmolarity Glycerol (HOG) signal transduction pathway

(Klipp et al., 2005), and the a project (Lok & Brent, 2005).

It is difficult to classify mathematical models applied in

either top-down or bottom-up systems biology as many

different types of models may be used, e.g. models based on

ordinary differential equations, stochastic models, stoichio-

metric models, and graph models. One approach to classify

models has, however, been given by Ideker & Lauffenburger

(2003), who classified mathematical models used in systems

biology as:

(1) high-level models that describe the components and

their interactions, and

(2) low-level models that describe the molecular mechan-

isms underlying interactions of the system components.

Clearly, these classifications are positioned at two ex-

tremes, but basically low-level models refer to a bottom-up

approach where the system is reconstructed from quantifying

all the interactions and the high-level models refer to a top-

down approach where structures, interactions, and their

strengths are extracted from global data (see Fig. 2). Most

bottom-up driven models only describe a subset of the

complete biological system, as there is simply not enough

quantitative information available to include interactions

between all the components within the cell. There is, how-

ever, one type of bottom-up model that is fairly global in its

approach: a metabolic network model. Metabolic network

models are based on collecting the stoichiometry for all

metabolic reactions into a stoichiometric matrix. Through

the use of flux balance analysis, where the fluxes are

constrained such that all intracellular metabolites balance,

and linear programming, it is possible to use these stoichio-

metric models for simulation of growth and product forma-

tion (Famili et al., 2003; Forster et al., 2003; Price et al.,

2004). As metabolic pathways and architecture are well

established, it is possible to expand this modelling concept

to cover practically all parts of the metabolism, and it may

even be possible to expand these models to cover regulation

(Barrett & Palsson, 2006; Herrgard et al., 2006). Thus, even

though these models are bottom-up driven, they actually

provide considerable information about the connectivity

between the different enzymes participating in the metabolic

network (Barabasi & Albert, 1999). Therefore, metabolic

models are unique as they fulfill the criteria of both high-

and low-level models. Genome-scale metabolic models pro-

vide a framework for organizing and integrating x-ome data.

Metabolic engineering

Metabolic engineering is an applied science focusing on

developing new cell factories or improving existing cell

factories (Bailey, 1991; Stephanopoulos & Vallino, 1991;

Nielsen, 2001; Tyo et al., 2007). There are several definitions,

but most of these are consistent with: the use of genetic

engineering to perform directed genetic modifications of cell

factories with the objective to improve their properties for

industrial application. In this definition the word improve

is to be interpreted in its broadest sense, i.e. it also

encompasses the insertion of completely new pathways with

the objective to produce a heterologous product in a given

host cell factory. Metabolic engineering is an enabling

science, and distinguishes itself from applied genetic engi-

neering by the use of advanced analytical tools for identifi-

cation of appropriate targets for genetic modifications and

possibly even the use of mathematical models to perform

in silico design of optimized cell factories. Metabolic en-

gineering is therefore often seen as a cyclic process (Nielsen,

2001), where the cell factory is analysed and based on this an

appropriate target is identified (the design phase). This

target is then experimentally implemented and the resulting

stain is analysed again. Thus, similar to systems biology,

metabolic engineering involves a continuous iteration be-

tween design and experimental work. In recent years, there

has been increasing focus on using mathematical models for

design (Burgard et al., 2003; Pharkya et al., 2004; Patil et al.,

2005b). Hereby, it is expected that metabolic engineering

will become faster and more efficient through the develop-

ment of robust and reliable mathematical models describing

the function of cell factories. To be fair, however, it should be

noted that a large percentage of the successes in using

microorganisms as cell factories have thus far occurred

without detailed modelling.

One obvious avenue in metabolic engineering is the

heterologous expression of complete biosynthetic pathways

leading towards interesting and valuable products. By intro-

ducing entire pathways, it is possible to either produce

known compounds more efficiently or, even through com-

binatorial biosynthesis, produce completely new chemical

entities that may serve as possible new products, such as

food ingredients, nutraceuticals, or pharmaceuticals. There

are many examples of exploiting yeast as a cell factory for the

production of different chemical entities (Table 2).

The insertion of heterologous pathways for the produc-

tion of valuable products, in general, does not by itself result
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in high-level production of the desired product. In order

to improve the yield or productivity, it is generally required

to improve the supply of the precursor metabolites and

the cofactors required for biosynthesis of the product. All

macromolecules and smaller metabolites in nature are

derived from only 12 precursor metabolites, i.e. glucose-6P,

fructose-6P, ribose-5P, erythrose-4P, glyceraldehyde-3P,

3P-glycerate, phosphoenolpyruvate, pyruvate, acetyl-CoA,

2-oxoglutarate, succinyl-CoA, and oxaloacetate. Besides

these 12 precursor metabolites the biosynthesis of metabo-

lites and proteins requires the use of cofactors like NADPH,

NADH, and ATP. The frequent use of the 12 precursor

metabolites and the cofactors in cellular reactions is illu-

strated in Table 3. As shown, about 16% of the almost 1200

reactions in a genome-scale metabolic model of S. cerevisiae

involve ATP (Forster et al., 2003). Not only do cofactors knit

different parts of the metabolism together but also the 12

precursor metabolites participate in a large number of

reactions. In fact, the metabolic network of S. cerevisiae

forms a very dense metabolic graph of enzymes and meta-

bolites, with an average diameter of about 5. This means

that it is possible to jump from any enzyme to any other

enzyme in the network in only five steps (connecting

through any other enzyme or metabolite) (Patil & Nielsen,

2005a) (Fig. 3).

Tight coupling of many different biochemical pathways

imposes a major constraint when the objective is to increase

the flux towards a specific precursor metabolite. As a result,

redirection of fluxes requires a fundamental understanding

of the complete network operation and not only on how the

fluxes distribute over a few branch points. For this purpose,

methods for flux quantification are extremely useful. Meta-

bolic fluxes can either be estimated through the use of flux

balance analysis (Nissen et al., 1997; Price et al., 2003) or

through the use of C13-labelled substrate feeding followed

by analysis of the labelling patterns in intracellular metabo-

lites (Gombert et al., 2001; Sauer, 2006). Owing to their

abundance and stability, C13-based methods have conven-

tionally used proteinogenic amino acids to detect labelling

patterns. Recently, however, methods for direct analysis in

the free pool of metabolites have been developed (van

Winden et al., 2005; Wiechert & Noh, 2005; Noh &

Wiechert, 2006). Besides providing general information on

how the metabolic network is operating under different

growth conditions, metabolic flux analysis is very well suited

for analysis of the effects of growth on different media (dos

Santos et al., 2003a), specific mutations (dos Santos et al.,

2003b), and screening of different mutants (Raghevendran

et al., 2004; Blank et al., 2005). Beyond applications in yeast,

this technology has also been demonstrated to be very useful

for analysis of a large collection of Bacillus subtilis mutants

Table 2. Examples of production of heterologous products in yeast

Type of product Specific application References

Hormones Production of insulin and insulin precursors. Through engineering of leader sequences,

the productivity of protein production has been increased substantially

Kjeldsen (2000)

Vaccines Production of hepatitis vaccines. Through expression of a virus surface protein in yeast,

an efficient vaccine has been developed

Ishida et al. (2006)

Organic acids Production of lactic acid. Through expression of a heterologous lactic acid dehydrogenase

in yeast, lactic acid production was achieved

Porro et al. (1999)

Sesquiterpenes Through heterologous expression of plant genes in yeast, many different sesquiterpenes

have been produced. This includes the anti-malarial drug precursor artemisinic acid

Ro et al. (2006)

Carotenoids Through expression of bacterial genes in yeast, b-carotene and lycopene were produced Yamano et al. (1994)

Diterpenoids Through expression of 10 plant genes in yeast, a major part of the biosynthetic route

towards taxol was reconstructed

DeJong et al. (2006)

Polyketides Through combined expression of a polyketide synthetase encoding gene together

with an activating enzyme, 6-MSA could be produced in high titers in yeast

Kealey et al. (1998)

Mutka et al. (2006)

Wattanachaisaereekul

et al. (2007)

Table 3. Frequency of precursor metabolites and cofactors in a

Saccharomyces cerevisiae genome scale model�

Precursor metabolite

No of

reactions Cofactor

No of

reactions

Glucose-6P 16 ATP 188

Fructose-6P 18 ADP 146

Ribose-5P 20 NADH 65

Erythrose-4P 6 NAD1 78

Glyceraldehyde-3P 13 NADPH 78

3-Phosphoglycerate 6 NADP1 86

Phosphoenolpyruvate 12

Pyruvate 27

Acetyl-CoA 32

2-Oxoglutarate 38

Succinyl-CoA 3

Oxaloacetate 12

�The data are taken from the metabolic model developed by Forster

et al. (2003).
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(Fischer & Sauer, 2005). Thus, flux analysis today represents

a standard technique for rapid phenotypic characterization

of metabolically engineered strains, and this tool is likely to

gain even wider use in the future.

Another important tool for metabolic characterization is

the analysis of the complete set of intracellular and extra-

cellular metabolites associated with a cell, or metabolome

analysis (Jewett et al., 2006). Having already shown utility in

drug discovery, strain classification (Allen et al., 2003), and

functional genomics (Raamsdonk et al., 2001), metabolome

analysis is emerging as powerful tool in systems biology

research. One of the major challenges currently being

addressed is ensuring robust and unbiased quantification of

a large number of metabolites. It is inherently difficult to

measure intracellular metabolites quantitatively as the very

low time constants for turnover of these metabolites require

rapid quenching of metabolism (Villas-Boas et al., 2005b). A

requirement for the quenching process is that the metabo-

lites do not leak out of the cells, and it is difficult to find a

method that can be generally applied to measure different

types of metabolites (Villas-Boas et al., 2005c). However,

in recent years several robust methods have been developed

for analysis of specific groups of metabolites, e.g. sugar

phosphates (Gonzalez et al., 1997; Smits et al., 1998;

Mashego et al., 2006) and amino and nonamino organic

acids (Villas-Boas et al., 2005a). In addition to dynamic

developments in refined analytical techniques, advances in

internal standardization, another main challenge in quanti-

tative metabolome analysis, are also paving the way for

more robust measurements. Heijnen and colleagues have

developed an approach that uses extracts from 13C-saturated

microbial cultivations to provide an internal standard for all

intracellular metabolites to be quantified (Mashego et al.,

2004; Wu et al., 2005). This work has created a platform

that is independent of ion-suppression effects, of metabolite

modifications during extraction, and of variations in instru-

ment response.

Examples of genomics and systems biology
studies of relevance for metabolic engineering

Owing to the high connectivity of the different metabolic

reactions within the metabolic network, there has been

considerable interest in exploiting tools from functional

genomics for mapping of global regulatory structures or

even using high-throughput experimental techniques pro-

vided by the various omics for dissecting how fluxes through

different branches of the metabolic network are controlled.

This can only be done through the combination of experi-

mental data and mathematical models of one kind or the

other. Westerhoff and colleagues have extended the concept

of metabolic control analysis for distributing flux control at

the hierarchical and metabolic levels (ter Kuile & Westerhoff,

2001; Rossell et al., 2006). Flux control at the hierarchical

level means that the flux through a given reaction is

controlled by transcription, translation or posttranslational

modifications, i.e. modification of the active enzyme con-

centration, whereas flux control at the metabolic level

indicates that the flux is controlled through interaction

between the enzyme and the metabolites. To identify cor-

egulated subnetworks within the metabolic network, along

with so-called reporter metabolites, the network structure

provided by a genome-scale metabolic network can be

combined with transcriptome data (Patil & Nielsen,

2005a). In this analysis, reporter metabolites represent hot-

spots in the metabolic network where there is the most

statistically significant transcriptional change between con-

ditions or strains. The concept of reporter metabolites has

been extended further to use metabolome data for identifi-

cation of reporter reactions (Cakir et al., 2006). By mapping

reporter reactions with reporter metabolites, it was possible

to categorize reactions into metabolically or hierarchically

regulated categories (Cakir et al., 2006). Another type of

multilevel analysis for capturing how information stored at

the genetic level is translated into phenotypic landscapes has

Sugar:
glucose
fructose
xylose
arabinose
galactose
sucrose
maltose
starch
hemicellulose

Products:
insulin
vaccines
lactate
sesquiterpenes
ββ -carotenoids
antibiotics
etc.

Precursors:
pyruvate
acetyl-CoA
oxaloacetate
2-oxoglutarate
etc.

Fig. 3. Illustration of how a yeast cell factory is

used to convert different raw materials (sugars)

into a wide range of different products. In all

cases the carbon passes through a set of 12

precursor metabolites, which form the building

blocks for all organic chemicals found in nature.
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been pursued by the group of Pronk by analyzing

the response of yeast to various environmental perturba-

tions. Vertical genomics strategies, integrating molecular

measurements from multiple layers of the cellular hierarchy

for a particular functional pathway (e.g. mRNA, proteins,

and metabolites), have clarified the sequential response

of glycolytic reactions in S. cerevisiae to a sudden relief

of glucose limitation (Kresnowati et al., 2006), and from a

broader perspective, provided an insight into transcriptional

control using proteomics (Kolkman et al., 2006). While

these new approaches for identifying key regulatory

structures controlling cellular behaviour hold significant

promise to impact metabolic engineering, they have yet to

be exploited.

With transcriptome analysis being the most mature and

well-implemented omics technique, there has been much

focus on whether this can be used to provide information on

how the metabolic network is operating (Jewett et al., 2005).

One successful application of transcriptome analysis for

identification of metabolic engineering targets was the

improvement of galactose uptake in S. cerevisiae. Through

genome-wide transcription analysis of several different

mutants with improved galactose uptake, Bro et al. (2005)

identified that there was up-regulation of PGM2 encoding

phosphoglucomutase. By overexpressing the PGM2 gene,

galactose uptake could be increased by 80%. Owing to the

presence of regulation at the level of translation and at the

metabolic level, there is no direct correlation between

transcripts and metabolic fluxes (Moxley et al., submitted).

However, Stelling et al. (2002) introduced so-called control

effective fluxes, which are functions of the different elemen-

tary flux modes (Schuster et al., 2000) in the metabolic

network, and showed that the control effective fluxes

correlate quite well with transcription in Escherichia coli.

In a later study, this was also shown to be the case for

S. cerevisiae when there was a shift on growth at different

carbon sources (Cakir et al., 2004). In order to further look

into the possible correlation between metabolic fluxes and

transcript levels, Regenberg et al. (2006) performed tran-

scriptome analysis at different specific growth rates in

chemostat cultures (glucose limited). They identified which

genes are decreasing and increasing for increasing specific

growth rates. Besides mapping all genes related to the

Crabtree effect, i.e. the onset of fermentative metabolism

under aerobic growth conditions, they found that genes

responsible for catabolism of C2 carbon sources, e.g. etha-

nol, are transcribed at low specific growth rates. This was

further confirmed in a study by Vemuri et al. (2007), who,

through heterologous expression of oxidases in both the

cytosol and in the mitochondria, showed that there is indeed

excess capacity of the TCA cycle, but that the onset of the

Crabtree effect is caused by lack of capacity for oxidation of

NADH in the mitochondria.

Future impact of systems biology on metabolic
engineering

Today, only a few examples on how systems biology has

impacted metabolic engineering and industrial biotechnol-

ogy have been seen. However, the introduction of high-

throughput experimental techniques has clearly enabled

much faster progress in terms of phenotypic characteriza-

tion of different mutants. In the future, when more ad-

vanced mathematical models and bioinformatics algorithms

specifically suited for metabolic engineering have been

developed, the value of using high-throughput experimental

techniques for mapping detailed phenotypes will clearly

increase. This is exemplified by the introduction of an

algorithm for identification of reporter metabolites (Patil &

Nielsen, 2005a), which enables rapid identification of hot-

spots in the metabolism based on transcriptome data. It

is expected that mathematical models will be used more

extensively in the design of metabolic engineering strategies,

particularly as recent results have shown that the predictive

power of metabolic models is sufficiently good to allow for

identification of metabolic engineering targets (Bro et al.,

2006). To further capitalize on yeast systems biology in the

field of industrial biotechnology, it is, however, important

that metabolic models are extended to include regulation, as

it is often possible to de-regulate fluxes through engineering

of regulatory structures (Ostergaard et al., 2000). For this

purpose, detailed kinetic models of signal transduction

pathways are expected to be useful, but such detailed models

are not necessarily required for identification of metabolic

engineering targets, as information about connectivity and

type of interaction, i.e. boolean-type information, is often

sufficient. At least in the short term, metabolic engineering

is likely to benefit more from top-down systems biology

than bottom-up systems biology. In the long run, however,

it will be desirable to have access to detailed kinetic models

as this will enable identification of advanced metabolic

engineering strategies that involves fine-tuning activities of

specific pathways.
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