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Since its early development and use to decipher the genetic

code, in vitro or ‘cell-free’ systems have been used as an

important research tool to understand biochemical

mechanisms and metabolic pathways. More recently, due to

important engineering advances the technology is rapidly

becoming a biomanufacturing platform for protein

therapeutics, vaccines, enzyme biocatalysts, fuels, and

commodity chemicals. Here we report recent applications and

advances in the cell-free biomanufacturing field and the

potential of this emerging approach.
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Introduction
Biomanufacturing has greatly improved humanity’s

quality of life from its earliest uses in fermentation

which helped sterilize and preserve beverages to

today’s $200 billion USD business that mass produces

antibiotics, vaccines, protein therapeutics, fuels,
www.sciencedirect.com 
commodity chemicals, and biocatalysts (Evaluate-

Pharma World Preview; URL: http://www.evaluate.

com/PharmaWorldPreview2017). To achieve this suc-

cess engineers have engaged in a great ‘tug-of-war’ with

microorganisms; where engineers fight against an

organism’s natural programming that judiciously allo-

cates energy toward maintenance and replication

instead of producing the engineer’s desired product.

This has inspired the development of new technology

to ‘cut-the-rope’ (Figure 1) by engineering in vitro or

‘cell-free’ systems that use the biomachinery harvested

from the lysate of disrupted cells. The engineer now

has unprecedented access to, control of, and real time

knowledge about the biochemical machinery and reac-

tions used in biomanufacturing without the constraints

of keeping the cell alive and working against its meta-

bolic programming [1,2].

General advantages of Cell-free Biomanufacturing

include:

� Control/Access: Biomanufacturing can be optimized to

temperatures and chemical environments that may be

cytotoxic [3]. Absence of a cell wall simplifies optimi-

zation by facilitating direct monitoring and the addition

or removal of cofactors and enzymes (which are con-

tinuously produced and degraded at varying rates by

living cells).

� Scalability: Biomanufacturing can be easily performed

at very small scales (microliter) to very large scale

(1000 L) with consistent results from the same stock

pile of reagents [4] which facilitates large-scale

responses to emergent threats as well as small, custom-

ized, on demand orders (personalized medicines).

� Stability: Biomanufacturing reagents can be stored in a

shelf-stable lyophilized format that increases portabil-

ity for ‘just-add-water’, distributed, on-site use [5–7].

� Speed: Time-sensitive products (medicines/vaccines

against a pandemic threat) can be rapidly produced

from active ribosomes, and the other necessary cellular

machinery, previously harvested [8��,9].

Cell-free biomanufacturing also come with its own set of

challenges which include:

� Risk: Although Sutro Biopharma has, with FDA per-

mission, begun clinical testing of a cell-free produced

antibody-drug conjugate, no biopharmaceutical that
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Figure 1
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A simple representation of cell-free systems cutting the conflict or

‘tug-of-war’ between the microorganism’s objective and the

biomanufacturing engineer’s objective.
uses this manufacturing approach has been approved

[10�]. In addition, biocatalysts and commodity chemi-

cals have also not traditionally been produced in this

manner.

� Standardization: Independent research labs have

developed both competing and complementary tech-

nology using various cell extract preparation proce-

dures, different genetic strains, and different micro-

organisms/cells (Escherichia coli, yeast, CHO, Rabbit,

Wheat germ, HeLa, and most recently human blood)

[11,12] with significantly different results and costs (see

Supplementary material for analysis). Biomachinery

content and activity can also vary significantly within

the same strain during different stages of growth, using

different fermentation media, and potentially with

different fermenters. In addition, ‘cell-free’ biomanu-

facturing can be performed in microfluidic [13,14],

batch [4], fed-batch [6], and semi-continuous/continu-

ous exchange [15,16] operational formats. Thus, while

cell-free processes offer broad design flexibility, opti-

mization for each product may be necessary.

� Cost: Cell-free biomanufacturing is currently more

expensive due to the energy and cofactors often

required to activate the biomachinary after harvesting

it from cells. This is particularly true for mammalian-

based and the E. coli-based PURE system (each com-

ponent is individually purified and then recombined).

However, E. coli-based lysate systems that are inex-

pensive to produce and require less complex purifica-

tion procedures are becoming cost-competitive [17–

19].

� Post-translational Modifications: While there have

been some advancements with mammalian-based sys-

tems, it remains difficult to keep the endoplasmic

reticulum and Golgi apparatus intact and functional

for glycosylation in high-yielding cell-free systems [20].

As challenges increasingly are addressed, cell-free sys-

tems are being developed for more and more creative and

impactful applications within the medical and chemical

industries (Table 1). These applications include
Current Opinion in Chemical Engineering 2018, 22:177–183 
production of vaccines, personalized and general biolo-

gics (protein therapeutics), next-generation biologics,

biocatalysts, fuels, commodity chemicals, and even bio-

sensors (Figure 2).

Cell-free biomanufacturing: protein
Therapeutic proteins

As some of the earliest cell-free protein synthesis systems

were used to decode the fundamental genetic code, it is

somewhat fitting that half a century later the tool is being

increasingly repurposed as a protein biomanufacturing

platform [2] (Figure 3). The achievements are predomi-

nantly due to advances that reengineer the system to

produce more complex human proteins and to improve

protein production yields (2 mg/mL in batch format [21]

and 6 mg/mL in fed batch format [6,22] while lowering

reagent costs for lysate-based systems (as low as $1–$2/

mL for the least expensive batch system based on E. coli
lysate when prepared in house and thus approaching $1/

mg protein; other systems based on CHO, HeLa, wheat

germ, and purified E. coli proteins cost $500–$900/mL;

see Supplementary for details). As large protein mole-

cules can be reliably synthesized only with biomanufac-

turing, and therapeutic proteins have particularly high

value ($100/mg–$1000/mg) [23], cell-free biomanufactur-

ing of therapeutic proteins has received the most intense

focus.

For reference, in vivo expression is typically more cost

effective (�$0.01/mg protein reagent cost when using E.
coli [24]), however cell-free systems provide several

advantages that justify this larger cost, which is still 2–

3 orders of magnitude below the potential sales price of

some therapeutic proteins. For example, cell-free system

reagents can now be sterilized, lyophilized, and stock-

piled which could enable large scale production of thou-

sands of doses of a desired therapeutic protein in as little

as one day [4,7]. A classic example for the need of such

speed results from the varying effectiveness of the yearly

influenza vaccines (which has varied from 10% to 60%

effectiveness over the past 15 years with influenza

remaining the 8th leading cause of death in the US).

(CDC; URL: https://www.cdc.gov/flu/professionals/

vaccination/effectiveness-studies.htm) The main reason

for varying effectiveness is the challenge of predicting the

three or four influenza strains that will be most prevalent

nine months before the influenza season to allow enough

time for manufacturing the vaccine. In contrast, stock-

piled cell-free reagents could be used to produce high

titers of vaccine in less than two weeks. Rapid biomanu-

facturing is also important for responding to unforeseen

pandemic threats (which are considered one of

humanity’s greatest threats) as well as enabling personal-

ized cancer therapeutics and medicines. Researchers have

demonstrated the potential of cell-free technology for

these applications by the rapid production of a personal-

ized cancer vaccine [25]. Cell-free systems have also been
www.sciencedirect.com
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Table 1

Advantages and challenges of cell-free biomanufacturing

Advantages Challenges

Reduced toxicity concerns —

no cells to keep alive

FDA has not approved a therapeutic produced using cell-free biomanufacturing

Direct access and control —

no cell wall to prevent monitoring and inhibit

transport to the biomanufacturing environment

Cell-free biomanufacutring reagents are more expensive than in vivo production

and are prohibitive for some systems

Scalability from the microliter to the 1000 liter scale

using the same reagents

Post-translational modifications are difficult to sustain in high-

yielding cell-free systems

Shelf-stable stability and portability with lyophilized reagents Cell-free systems could theoretically last much longer and

produce more product that current systems and more engineering is

needed to realize this potential

Rapid production in response to health crisis/disease or

market demands

Acceptable product costs may require optimization of biomanufacturing

reactor formats and lysate production

Figure 2
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Biomanufacturing application of cell-free systems.
recently explored to produce other vaccines, including an

influenza vaccine [26], as well as virus-like particles which

have particular promise as a vaccines scaffold [3]. The use

of cell-free systems for non-canonical amino acid incor-

poration also shows benefits to in vivo systems by remov-

ing transport rate limitations and enabling direct optimi-

zation of component concentrations.

In general, rapid, on-demand therapeutic production

from sterile, shelf-stable, stockpiled reagents [7] shows

great promise to break the cold-storage chain and poten-

tially enable biosimilars (protein therapeutics off patent)

to be produced at low cost nearly anywhere in the world.

These advances could greatly expand the availability of

life-saving therapeutics to humanity. To realize this goal,
www.sciencedirect.com 
researchers have developed suitcase-size automated tech-

nology [27��], simplified purification requirements [28],

and very recently created an endotoxin-free E. coli-based
cell-free system which could potentially increase the

safety of protein therapeutics, simplify therapeutic puri-

fication, and reduce quality control needed [29]. For

personalized medicine applications, researchers have

recently demonstrated a cart-sized system that can syn-

thesize a protein from digital sequence (combines DNA

synthesis tools with cell-free protein expression) [30�].

The technology also shows great promise for the produc-

tion of the next generation of protein therapeutics. For

example, PEGylated (attachment of polyethylene glycol)

protein therapeutics are commonly the 2nd generation
Current Opinion in Chemical Engineering 2018, 22:177–183
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Figure 3
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Applications of cell-free protein biomanufacturing.
therapeutic due to enhanced pharmacokinetics and sta-

bility. Cell-free researchers have recently demonstrated

how integrating computation and cell-free screening can

be successfully used to produce and screen a library of

proteins site-specifically PEGylated at different locations

to identify an optimally modified biotherapeutic [31�].
The best candidate, having been produced with cell-free

expression, could then be simply transferred to a cell-free

enabled biomanufacturing platform. A number of

researchers have also demonstrated how the open cell-

free system enables facile incorporation of non-canonical

amino acids, which expands sequence space and could

enable the development of better protein therapeutics in

the future [32–35]. Overall, recent developments illus-

trate the bright future of cell-free systems for the

manufacturing of protein therapeutics [10�].

Enzyme biocatalysts

Beyond therapeutics, cell-free systems have also been

utilized to manufacture enzyme biocatalysts. The con-

tinued reduction in cell-free reagent costs is particularly

important in this area where enzyme biocatalysts, in

general, have unit values only a small fraction of those

for protein therapeutics. However, a niche exists for

specialized biocatalysts and for more stable and recycla-

ble enzymes which greatly increases their unit value [36].

Researchers have recently demonstrated that cell-free

systems can be used to rapidly produce enzymes that

can then be site-specifically attached to superparamag-

netic carriers. These catalytic nanoparticles can then be

screened to determine the optimal location of attachment

for long-term stability and reuse [37]. In addition, the

non-canonical amino acid incorporation capabilities can
Current Opinion in Chemical Engineering 2018, 22:177–183 
be used in the future to expand sequence space and find

faster, more stable, and more specific enzymes [38,39]. An

additional feature that could be exploited is the rapid and

scalable production capability of cell-free systems. This

could enable a faster biomanufacturing response to mar-

ket conditions, where cell-free systems could quickly

produce enzymes for a different, more valuable biocata-

lytic pathway in response to daily market changes.

Protein-based biosensors

A variety of cell-free-based biosensors has been devel-

oped in the past few years [40–44] where a protein

reporter provides a signal by fluorescence (GFP), chemi-

luminescence (luciferase), or color (beta-galactosidase)

based on regulation at transcription, translation, or even

protein folding stages that responds to the presence of a

specific analyte [45]. Toxins [40], pathogenic bacteria

[44], viruses [41], and endocrine disrupting molecules

[42,46] have been effectively detected in this way with

mL and nL size cell-free protein synthesis-based biosen-

sors. While these sensors were primarily designed for in-

lab tests due to the need to freeze cell-free reagents, the

ability to lyophilize cell-free systems [47] opens the door

to portable use at low cost due to the small quantities of

reagents required at the nL reaction scale [41]. Paper-

based diagnostics are especially attractive for biosensors

using cell-free protein synthesis [48,49].

Cell-free biomanufacturing: small molecules
In addition to classical protein synthesis, cell-free systems

are gaining momentum as small molecule biomanufactur-

ing platforms as detailed in many recent reviews [50,51].

Briefly, lysate-based cell-free technology has been

expanded beyond protein synthesis to other biochemical

pathways [52]. Here genetic engineering requirements

for metabolic engineering can be circumvented by mixing

and matching different lysates enabling enrichment of

limiting chemicals and enzymes [5]. In addition, there is

no risk of an intermediate building up and being toxic to

the cells, and the lack of cell wall, which provides direct

monitoring and the ability to directly add, subtract, and

control small molecule and protein concentrations, sim-

plifies metabolic pathway optimization [53]. Because of

these advantages, several small molecule pathways and

products have been produced including: butanol [52],

pyruvate [54], lactate [55], mevalonate [5], butanediol

[56], and even natural products [8��,57–59]. Small mole-

cule manufacturing is particularly promising with cell-

free systems engineered to use lower cost reagents such as

glucose [60] and even chitin [54] as energy sources where

cost is a major driver in bulk production of commodity,

specialty, and fine chemicals.

Future directions of cell-free
biomanufacturing
With the exponential growth of research in cell-free

systems [61], the future of cell-free biomanufacturing
www.sciencedirect.com
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has increasing promise. While diverse applications and

products have been demonstrated by academic and

industrial labs, the primary impediments to widespread

use are FDA approval as a therapeutic production plat-

form and the cost for lower margin biocatalyst, biosen-

sing, and small molecule synthesis applications. Even for

higher margin therapeutic applications, in-house prepa-

ration of cell-free reagents is necessary (see Supplemen-

tary). While, the E. coli lysate-based system appears to be

the most cost-effective approach, it has so far been

unable to perform some post-translational modifications

such as human-form glycosylation. Thus progress is

needed in engineering post-translational modifications

such as glycosylation (with some initial progress reported

by Jewett, DeLisa, and Mrksich [62–64,65��]) or engi-

neering CHO, HeLa, human blood, wheat germ, or other

eukaryotic systems to be both higher yielding and avail-

able at a lower cost (e.g. less expensive reagents, stream-

lined preparation procedures). Decreasing the price fur-

ther is especially important for industrial enzyme

biocatalyst manufacturing and the majority of small

molecule synthesis applications due to the very low

margins of these commodities. Engineering to extend

the life-time of these systems is also needed, which

could be done by identifying and preventing the buildup

of molecules that poison the cell-free system (such as

phosphate as achieved by Kim et al. [66]) as well as

inhibiting or removing nucleic acid and protein degra-

dation pathways. Biosensors employing cell-free synthe-

sis may soon gain commercial importance as the nL

quantities required greatly lowers the cost and cell-free

systems can be sterilized to essentially eliminate the

release risk of a genetically modified organism.

As the above challenges are overcome, cell-free systems

could greatly speed up customized biomanufacturing by

integrating DNA synthesis with protein production for

digital-to-protein synthesis in a matter of hours [30�].
There is also potential for automated machine learning

as integrating simulation with cell-free systems in opti-

mization cycles has been reported [31�]. In addition, cell-

free systems are having transformational impacts in edu-

cation, where relatively few biology classroom demonstra-

tions have been practical. Very recently, lyophilized cell-

free systems have been deployed to create safe, hands-on

biomanufacturing classroom demonstrations [67,68].

Lyophilized shelf-stable cell-free systems are perhaps

among the most exciting innovations because they break

cold-storage chain requirements and enable the use of

cell-free biomanufacturing potentially anywhere in the

world. Thus cell-free systems are opening the door to

distributed, real-time responses to humanity’s biomanu-

facturing needs.
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