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RNA-based nanotechnology is an emerging field that har-
nesses RNA’s unique structural properties to create new 
nanostructures and machines1,2. Perhaps more so than for 

other biomolecules, the RNA tertiary structure is composed of 
discrete and recurring components known as tertiary ‘motifs’3. 
Along with the helices that they interconnect, many of these 
structural motifs appear highly modular; that is, each motif folds 
into a well-defined three-dimensional (3D) structure in a broad 
range of contexts2,4–6. By exploiting symmetry, motif repetition, 
expert modelling and computational tools for visualization and 
modelling flexibility, these motifs have been assembled into new 
polyhedra, sheets and cargo-carrying nanoparticles for biomedi-
cal use7–10. Despite these advances, current methods still rely on 
human intuition and the field cannot yet generate RNAs as sophis-
ticated as natural RNA machines, which are asymmetric, too large 
to be modelled by 3D RNA structure prediction methods and 
composed of vast repertoires of distinct interacting motifs, most of 
which are not yet well characterized11–13.

We present here a new approach to 3D RNA design based on 
the recognition that numerous recurring problems in the field can 
be cast into the same ‘pathfinding’ problem (Fig. 1). First, a found-
ing problem of RNA nanotechnology involves designing a compact 
nanostructure that aligns the two parts of the tetraloop/tetraloop 
receptor (TTR) so that they can form a tertiary contact upon RNA 
chain folding (Fig. 1a). This task requires finding RNA sequences 
that interconnect the 5′ and 3′ ends of the tetraloop (orange) to the 
3′ and 5′ ends of the tetraloop receptor, respectively (blue in Fig. 1a). 

The problem has previously been solved through a combination of 
expert manual modelling and the symmetric assembly of multiple 
chains5,14. In all cases, an important guiding principle—sometimes 
called RNA architectonics4—is to design the intermediate RNA 
chains so that they form RNA modules previously seen in nature, 
including both canonical double-stranded helices and non-canoni-
cal RNA motifs that twist and translate between two desired helical 
end-points at the tetraloop and the receptor. We call this design task 
the ‘RNA motif pathfinding problem’. The general complexity of this 
pathfinding task has prevented the design of asymmetric, single-
chain solutions to the TTR stabilization problem.

A second problem is highly analogous to the TTR stabilization 
problem but is more difficult. Efforts to select engineered ribo-
somes with messenger RNA decoding, polypeptide synthesis and 
protein excretion functions optimized for new substrates might 
be dramatically accelerated through the design of integrated ribo-
somes. An important step towards this goal involves tethering the 
two 23S and 16S ribosomal RNAs (rRNAs) of the ribosome into 
a single RNA strand that supports Escherichia coli growth15–18. 3D 
designs for the tether require solving the RNA motif pathfinding 
problem over >100 Å distances and avoiding steric collisions with 
the ribosome’s RNA and protein components (blue and orange 
strands in Fig. 1b). Even after the identification of appropriate helix 
end-points, this difficult design challenge previously took more 
than a year to solve using in vivo assays based on trial-and-error 
refinement16,17 or the ad hoc combination of non-canonical motifs 
without explicit 3D modelling15,18.
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A third problem involves a more complex instance of two RNA 
motif pathfinding problems (green, purple, red and teal lines in Fig. 
1c). A ubiquitous task in RNA nanotechnology is the selection of 
‘aptamer’ RNAs that sense or carry target small molecules, such as 
adenosine 5′-triphosphate or fluorophores19. Despite recent prog-
ress20,21, improving aptamers requires numerous rounds of tedious 
selections, with few design tools available to guide consistent improve-
ments. The desired stabilizations might be achieved by peripheral 
tertiary contacts that extend out of either end of the aptamers and 
encircle them, bracing them into their functional 3D arrangements 
(Fig. 1c), analogous to the tertiary contacts that ‘lock’ natural ribo-
switch aptamers22. However, such rational design has not been car-
ried out due to the difficulty of finding the required four strands that 
interconnect a given aptamer structure and a tertiary contact.

Here, we present a 3D RNA design algorithm, RNAMake, that 
solves all three cases of the RNA motif pathfinding problem described 
above. Gauntlets of structural and functional measurements test that 
these computationally designed nanostructures, ribosomes and ATP 
and fluorescent RNA aptamers achieve their design goals, without 
the need for any further rounds of trial and error.

The RNAMake algorithm and motif library
RNAMake uses a 3D motif library drawn from all unique, publicly 
deposited crystallographic RNA structures and an efficient algo-

rithm to discover combinations of these motifs and helices that solve 
the RNA motif pathfinding problem (Methods and Supplementary 
Table 1). The final set of non-canonical motifs contained 461 
unique two-way junctions, 61 higher-order junctions, 290 variable-
length hairpins and 89 tertiary contacts. The pathfinding algorithm 
assembles canonical helical segments that range from 1 to 22 base 
pairs with these non-canonical structural motifs, step-by-step in a 
depth-first search (Fig. 1d and Methods). The canonical helical seg-
ments are idealized and sequence invariant23; after completion of 
the 3D structural designs, they are filled in with sequences that best 
match the target secondary structure and minimize alternative sec-
ondary structures24. Owing to its efficient algorithmic implementa-
tion, RNAMake is able to find solutions rapidly; the run time scales 
linearly with the problem size, and the discovery of exceptionally 
long double-stranded RNA paths that snake around the entire ribo-
some takes less than 3 s (run on a Macbook Pro 2016, 2.9 GHz Intel 
Core i7) (Fig. 1e,f).

RNAMake TTR designs achieve high stability
The problem of creating a well-folded RNA nanostructure was 
first solved two decades ago by repurposing the well-characterized 
TTR tertiary contact to bring together two separate RNA chains5, 
analogous to the P4–P6 domain of the Tetrahymena group I self-
splicing intron and other natural functional RNAs. Although later 
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Fig. 1 | Problems in RNA nanotechnology reduced to RNA motif pathfinding problems and solved by RNAMake. a, ‘MiniTTRs’ require two strands (green 
and purple) between a tetraloop (orange) and tetraloop receptor (blue). b, Tethered ribosomes require two strands (green and purple) to link the small 
subunit (orange) to the large subunit (blue). c, ‘Locking’ a small-molecule binding aptamer (cyan) by designing four strands (green, purple, teal and red) 
to a peripheral tertiary contact (orange and blue). Red spheres, ATP molecules. d, Demonstration of the RNAMake design algorithm, which builds an RNA 
path via the successive addition of motifs and helices from a starting base pair to the ending base pair. e,f, Computational efficiency for RNAMake to design 
connections between each pair of hairpins on the 50S E. coli ribosome. The run time scales linearly with problem size, as measured by the translational 
distance between helical end-points (e) or the number of residues required for segments (f) (higher order junctions are utilized in Supplementary Fig. 14).
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RNA nanotechnology studies used the TTR module and other 
structural motifs to design different nanostructures, the original 
and later designs are all multichain assemblies25–29. We chose to test 
RNAMake on the TTR problem because of the prospect of achiev-
ing de  novo single-chain solutions to this fundamental problem, 
which we hypothesized might also help crystallization. We gener-
ated 16 diverse single-chain solutions with RNAMake, which we 
called ‘miniTTR’ designs.

Standard biochemical and biophysical assays for the RNA struc-
ture confirmed folding for the majority of the miniTTR designs. We 
tested the miniTTR RNAs for the correct secondary structure and 
tertiary contact formation with single nucleotide resolution chemi-
cal mapping (SHAPE (selective 2′-hydroxyl acylation analysed by 
primer extension) and DMS (dimethyl sulfate) (Supplementary Fig. 
1b); Fig. 2a gives DMS at the tetraloop and receptor nucleotides), 
for compact folds through native gel electrophoresis and mutational 
analysis (Fig. 2b and Supplementary Fig. 1c) and for tertiary sta-
bility through Mg2+ binding curves (Fig. 2c,d and Supplementary 
Table 2). Overall, 11 of the 16 designs passed these experimental 
screens (details given in Supplementary results and Supplementary 
Table 3). Several miniTTR constructs required less than 1 mM Mg2+ 
to fold stably, similarly to or better than reported midpoints for nat-
ural TTR-containing RNA nanostructures. Indeed, miniTTR 2 and 
miniTTR 6 exhibited folding stabilities better than that of the P4–
P6 RNA in side-by-side assays (Fig. 2c). Furthermore, miniTTR 6 
had a much sharper Mg2+ dependence than P4–P6 with an apparent 
Hill coefficient of over ten (Fig. 2c). The stability of the RNAMake 
designs was particularly notable given that P4–P6 and other natu-
ral TTR-containing RNAs are larger than the miniTTR designs 
and have additional stabilizing tertiary contacts30–32 and that other 
attempts to make artificial minimized TTR constructs gave signifi-
cantly worse stabilities33.

After the gel-based and chemical mapping tests, we tested whether 
the RNAMake designs might allow crystallization and thereby enable 
high-resolution characterization of the structural accuracy of the 
designs. After small-angle X-ray scattering (SAXS) measurements 
confirmed a monomeric structure even at high RNA concentra-
tions (>1 µM) (Fig. 2e,f, Supplementary results and Supplementary 
Fig. 2a,b), we were able to obtain crystals of miniTTR 6 that dif-
fracted at 2.55 Å resolution (1/σ of 1.0) (Fig. 2g and Supplementary 
Table 10). The crystal structure and the RNAMake model agreed 
with an all-heavy-atom root mean squared deviation (r.m.s.d.) of 
4.2 Å, better than the nanometre-scale accuracy typically sought in 
RNA nanotechnology. The primary discrepancy between our mod-
elled 3D structure and the crystal structure was a single motif, a 
triple mismatch drawn from the large ribosomal subunit (Fig. 2h, 
right). This motif formed multiple consecutive non-canonical base 
pairs with high B factors in our miniTTR 6 crystal instead of the 
conformation found in the ribosomal structure, which involved 
flipped-out adenosines (residues O2360–O2363 and O2424–O2426 
(Protein Data Bank (PDB) 1S72)) (Fig. 2h, left). Other motifs in the 
design achieved near-atomic accuracy, including the TTR tertiary 
contact (r.m.s.d. 0.45 Å (Fig. 2i)), a kink-turn variant drawn from 
the archaeal 50S ribosomal subunit (r.m.s.d. 2.0 Å (Fig. 2j))34 and a 
‘right-angle turn’ drawn from a viral internal ribosomal entry site 
domain (r.m.s.d. 1.28 Å (Fig. 2k))25.

Automated 3D design of tethered ribosomal subunits
After testing RNAMake’s performance in designing compact RNA 
nanostructures, we evaluated whether it might solve a practical 
problem involving nanostructures that must traverse long distances 
(compare Fig. 1a,b). The ribosome is a ribonucleoprotein machine 
dominated by two extensive RNA subunits, the 16S and 23S rRNAs. 
In previous work, we constructed a tethered ribosome called Ribo-T 
in which the large and small subunit rRNAs were connected by an 
RNA tether to form a single subunit ribosome17. In that work, the 

major bottleneck involved more than a year of numerous trial-and-
error iterations to identify RNA tethers that were not cleaved by 
ribonucleases in vivo when wild-type ribosomes were replaced in 
the Squires strain of E. coli17. The Squires strain cells lack genetic 
rRNA alleles, surviving off plasmids that can be exchanged using 
positive and negative selections. Early failure rounds that involved 
ribosomes from our and other studies are shown in Fig. 3a,b and 
the success with Ribo-T in Fig. 3c. Nevertheless, the current tethers 
in Ribo-T are unstructured and unlikely to remain stable if other 
modules are incorporated (Fig. 3c). We hypothesized that an auto-
mated design by RNAMake might give structured, chemically stable 
tethers for this design problem.

RNAMake generated 100 designs (RM-Tethers), which con-
tained either four or five non-canonical structural motifs each 
(Methods gives the motif selections), to tether the H101 helix on 
a circularly permuted 23S rRNA to the h44 helix on the 16S rRNA 
(Fig. 1b and Supplementary Fig. 3b). Of the nine diverse solu-
tions we tested (RM-Tether 1–9), DNA templates for seven could 
be synthesized, and the transformation of these DNA templates 
into the Squires strain allowed us to assay whether the RNAMake 
designs could replace wild-type ribosomes deleted from growing 
bacteria. One of these seven constructs, RM-Tether 4, led to the 
viable growth of bacterial colonies. DNA sequencing confirmed 
that these colonies harboured the correct RM-Tether 4 plasmid; 
and RNA electrophoresis confirmed the presence of a single domi-
nant RNA species with the same length as Ribo-T, with no detect-
able products that corresponded to separate 16S or 23S rRNA 
lengths or other cleavage products (Fig. 3d). Although the growth 
rate of this strain was low (Supplementary Fig. 4d), we were able 
to confirm independently that the ribosomes loaded on messenger 
RNA in vitro, using integrated synthesis, assembly, and translation 
(iSAT) in ribosome-free S150 extracts35,36. Similar to Ribo-T16, we 
detected 70S/monosome37 and polysomes (and no 30S or 50S sub-
units) by separation of the iSAT-prepared RM-Tether 4 ribosomes 
on a sucrose gradient (Fig. 3e and Methods). Electrophoresis of the 
polysome fraction confirmed that it contained an uncleaved rRNA 
the same size as Ribo-T (Fig. 3f). In addition, SHAPE-Seq map-
ping on this rRNA confirmed that the RM-Tether 4 can be reverse 
transcribed from one ribosomal subunit to the other across both 
strands of the tether and highlights a chemical reactivity profile 
consistent with the design, with one region of flexibility around 
the middle junction (Supplementary Fig. 5). Taken together, these 
data demonstrate that RNAMake-designed ribosomes with struc-
tured, chemically stable tethers can replace wild-type ribosomes 
in vivo and more than one such ribosome can be loaded onto a 
single message in  vitro. RNAMake obviates the repeated rounds 
of trial and error that were previously required to achieve these 
design goals.

RNAMake stabilizes small-molecule binding aptamers
As a final series of tests, we evaluated whether RNAMake could solve 
3D design problems whose complexity precluded prior progress 
even with trial and error or large-scale library selections. Small mol-
ecules can be bound and sensed by artificially selected RNA aptam-
ers. Unfortunately, these molecules often exhibit weakened binding 
affinities or instability in biological environments and additional 
rounds of selection to improve aptamers typically give diminishing 
returns38–40. By expanding RNAMake to allow the design of inter-
connections between multiple pairs of helices (Fig. 1c), we tested 
the hypothesis that the computational design of peripheral tertiary 
contacts might ‘lock’ these artificial aptamers into their bound con-
formation even in the absence of a ligand. By reducing the number 
of alternative structures available in the unbound state, such locking 
contacts could selectively increase the free energy of the unbound 
state and thereby improve the free-energy difference to the bound 
state, and so lead to a better affinity to small molecule targets.
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First, we sought to stabilize a classic aptamer for adenosine 
5′-triphosphate and adenosine 5′-monophosphate (ATP and AMP, 
respectively), which is in wide use in RNA nanotechnology but 
whose binding has not been appreciably improved since its dis-
covery in 199341–45. In total, we tested ten ATP aptamers embed-
ded by RNAMake into scaffolds with tetraloop–receptor contacts, 
which we called ATP-TTR designs (Fig. 4a and Supplementary 
Fig. 6; Methods describes the modelling of helix flexibility used 
for these designs). Chemical mapping confirmed that four of these 
RNAs formed the TTR and also retained their ability to bind to 

ATP, as assessed by the DMS protection of aptamer nucleotides 
A13 and A14 (Supplementary Table 4 and Supplementary Fig. 7). 
Titrations of ATP read out through chemical mapping (Fig. 4d and 
Supplementary Table 4) showed that three designs achieved better 
ATP dissociation constants (Kd of 1.5, 4.1 and 1.4 µM) than that of 
the isolated ATP aptamer under the same conditions (Kd = 16.2 µM), 
improvements by up to an order of magnitude. Three of the ATP-
TTRs gave ligand-free DMS reactivity profiles in the aptamer 
regions similar to that of the ligand-bound aptamer, which suggests 
that they preform the structure needed for ATP binding rather than 
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require conformational rearrangements observed in the isolated 
ATP aptamer (Fig. 4b,c and Supplementary Table 4)41. These results 
demonstrate that the TTR peripheral contact efficiently couples to 
enhance the binding of ATP in the aptameric region, as desired. As 
a further test of this coupling, we confirmed that the Mg2+ require-
ments to form the TTR were reduced in the presence compared 
to the absence of the small-molecule ligand in these constructs 
(Supplementary results and Supplementary Fig. 7b).

As a second test of aptamer stabilization, we assessed whether 
RNAMake could stabilize the Spinach RNA, which binds an 
analogue of the green fluorescent protein chromophore (Z)-4-

(3,5-difluoro-4-hydroxybenzylidene)-1,2-dimethyl-1H-imidazol-
5(4H)-one (DFHBI) within a G-quadruplex. Binding to Spinach 
enhances the fluorescence of DFHBI by ~1,000-fold relative to 
that of unbound ligand, which makes this RNA useful for bio-
logical interrogations39,46, although its binding affinity, brightness, 
folding efficiency and biological stability remain poor even after 
extensive efforts to discover improvements, such as the minimized 
Spinach and Broccoli aptamers47–50. We characterized 16 ‘Spinach-
TTR molecules’ designed by RNAMake to embed the Spinach 
aptamer into scaffolds with tetraloop–receptor contacts (Fig. 4e and 
Supplementary Fig. 8). SHAPE chemical mapping confirmed that 
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these molecules form tetraloop–receptor contacts in 13 of the 15 
cases that could be tested (Supplementary Fig. 9 and Supplementary 
Table 5). By carrying out fluorescence assays that titrated both RNA 
and DFHBI concentrations, we evaluated the dissociation con-
stants, brightness and folding efficiency of these designs. Seven of 
the 16 Spinach-TTR designs exhibited a twofold brighter fluores-
cence than that of the original Spinach as well as a brighter Broccoli 
aptamer (Fig. 4f, Supplementary Fig. 10 and Supplementary Tables 
5 and 6). Two of these constructs, Spinach-TTR 3 and 8, were not 
only brighter but also gave a higher affinity and improved folding 
efficiency relative to that of Broccoli and a minimized Spinach con-
struct, Spinach-min (Fig. 4g and Supplementary Tables 5 and 6).

We hypothesized that these improvements to in  vitro stabil-
ity measures might also lead to an improved stability in a harsh 
biological environment. When the DFHBI-bound RNAs were 
challenged with 20% whole cell lysate extracted from the eggs of 
Xenopus laevis, six of the seven Spinach-TTR constructs exhibited 
fluorescence for a longer time than the control Spinach and Broccoli 
sequences (Methods). Spinach-TTR 3 exhibited a particularly high 
stability (Fig. 4h), with a time to half fluorescence of 131 minutes, 
compared to <20 minutes for Spinach, Spinach-min and Broccoli 
(Supplementary Table 6 and Supplementary Fig. 11). This same 
robust fluorescence of the Spinach-TTRs was observed in 20% 
E. coli. lysate, which suggests a general stabilization in biological 
environments (Supplementary Fig. 12). We finally sought to assess 
the ability of the Spinach-TTR constructs to activate fluorescence 
in cells, using E. coli as a test bed. Six Spinach-TTR designs were 
cloned into a plasmid for T7 RNA polymerase-driven expression 
(Methods). Each Spinach-TTR variant was able to significantly acti-
vate expression above the background, and several designs exceeded 
the fluorescence observed for both Spinach and Broccoli in  vivo 
(Supplementary Fig. 13).

Conclusions
As RNA nanotechnology seeks to create artificial molecules closer 
in sophistication to natural RNA molecules, the design of tertiary 
structures that are as complex, asymmetric and diverse as natural 
RNAs becomes an important goal. Here, we hypothesized that sev-
eral distinct tasks in designing complex RNA tertiary structures 
might be reduced to instances of a single RNA motif pathfinding 
problem and developed the algorithm RNAMake to solve the path-
finding task (Table 1 and Supplementary results). For the miniTTR 
nanostructure design problem, 11 of 16 molecules exhibited the 
correct tertiary fold in nucleotide-resolution chemical mapping 
and electrophoresis assays, and we achieved a crystal structure of 
one design that confirmed its accuracy at a high resolution. For 
the problem of tethering E. coli 16S and 23S rRNAs into a single 
RNA molecule, one of nine RNAMake-designed molecules replaced 
ribosomes in vivo and was confirmed to translate in polysomes in 
cell-free translation reactions. For the problem of stabilizing aptam-
ers through locking tertiary contacts, 3 of 10 RNAMake-designed 

ATP-TTR molecules achieved an improved affinity to ATP com-
pared to that of the starting aptamer, and seven of 16 Spinach-TTR 
designs maintained their binding affinity for the DFHBI fluoro-
phore while achieving improvements in fluorescence and folding 
efficiency in vitro, and in stability in extracto and in vivo. In each 
task, RNAMake achieved its design objectives in a single round of 
tests that involved the parallel synthesis of 8–16 constructs, without 
further trial-and-error iteration.

As RNAMake is applied to more problems, we expect its suc-
cess rate to improve further. Accumulating knowledge as to which 
structural motifs recur in successful versus failing designs may 
allow an empirical scoring for the modularity of each motif; infer-
ences for some motifs, such as A–A mismatches, are already pos-
sible (Supplementary discussion). Second, the incorporation of 
motifs that are known to sample at least two conformations (for 
example, the triple mismatch in miniTTR6 herein or kink turns) 
may allow an improved design of such machines as the ribo-
some, and improved cryogenic electron microscopy methods may 
provide more detailed feedback on such distinct states18,51. Third, 
natural structured RNAs often contain multiple tertiary contacts 
and multibranched junctions and we have extended RNAMake’s 
pathfinding method to design such motifs (Supplementary Fig. 14). 
Finally, we expect RNAMake’s computational design approach to be 
complementary to library selection and high-throughput screening 
methods52, especially for larger problems that require numerous 
non-canonical motifs. By distributing RNAMake as a source code 
and a server, we hope to encourage these applications and exten-
sions of computational RNA design.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41565-019-0517-8.
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Methods
Software availability. All the software and source code used in this work are 
freely available for non-commercial use. RNAMake software and documentation 
are at http://rnamake.stanford.edu. An RNAMake server to perform scaffolding 
and aptamer stabilization is available at http://rnamake.stanford.edu. EteRNAbot 
secondary structure design is available at https://software.eternagame.org.

Sequences and primers. All the sequences and primers used in this study are given 
in Supplementary sequences and Supplementary primers, respectively.

Building the motif library. To build a curated motif library of all the RNA 
structural components, we obtained the set of non-redundant RNA crystal 
structures managed by the Leontis and Zirbel groups53 (version 1.45, http://rna.
bgsu.edu/rna3dhub/nrlist/release/1.45). This set specifically removes redundant 
RNA structures that are identical to previously solved structures, such as ribosomes 
crystallized with different antibiotics. We processed each RNA structure to extract 
every motif with Dissecting the Spatial Structure of RNA (DSSR)54 with the 
following command:

x3dna-dssr –i file.pdb –o file_dssr.out

We manually checked each extracted motif to confirm that it was the correct 
type, as DSSR sometimes classifies tertiary contacts as higher-order junctions and 
vice versa. For each motif collected from DSSR, we ran the X3DNA find_pair 
and analyze programs to determine the reference frame for the first and last 
base pair of each motif to allow for the alignment between motifs:

find_pair file.pdb 2> /dev/null stdout | analyze stdin 
>& /dev/null

The naming convention for each motif involves the motif classification, the 
originating PDB accession code and a unique number to distinguish from other 
motifs of the same type, all separated by periods. For example, TWOWAY.1GID.2, 
is a two-way junction from the PDB 1GID and is the third two-way junction to 
be found in this structure. All the motifs retain their original residue numbering, 
chain identifications and relative position compared to their originating structure.

In addition to the motifs derived from the PDB, we also utilized the make-na 
web server (http://casegroup.rutgers.edu/nab.html) to generate idealized helices of 
between 2 and 22 base pairs in length23. All the motifs in these generated libraries 
are bundled with RNAMake and are grouped together by type (junctions, hairpins 
and so on) in sqlite3 databases in the RNAMake directory RNAMake/resources/
motif_libraries_new.

Automatically building new RNA segments. RNAMake seeks a path for RNA 
helices and non-canonical motifs that can connect two base pairs separated by a 
target translation and rotation. We developed a depth-first search algorithm to 
discover such RNA paths. The algorithm is guided by a heuristic cost function f 
inspired by prior manual design efforts2,25 and is composed of two terms:

f ðpathÞ ¼ hðpathÞ þ gðpathÞ ð1Þ

The first term, h(path), describes how close the last base pair in the path is to 
the target base pair; h(path) = 0 corresponds to a perfect overlap in translation and 
rotation. The functional form for h(path) depends on the spatial position of each 
base pair’s centroid d and an orthonormal coordinate frame R that defines the 
rotational orientation of each base pair46:

hðpathÞ ¼ jd1
!� d2

!j þW jd1
!� d2

!j
 X3

i

X3

j

abs R1ij � R2ij
� 

ð2Þ

Here W(d) is:

WðdÞ ¼
0; if d>150

log 150
d ; if 1:5<d<150

2; if 1:5>d

8
><
>:

ð3Þ

where d is measured in ångströms. The weight W(d) reduces the importance of the 
current base pair and the target base pair with a similar alignment when they are 
spatially far apart. This term conveys the intuition that aligning the two coordinate 
frames becomes important only as the path of the motif and helices approaches the 

target base pair. RNAMake readily allows for the exploration of alternative forms 
of the cost function terms (2) and (3), which include more standard rotationally 
invariant metrics to define rotation matrix differences55 or base-pair-to-base-pair 
r.m.s.d. values based on quaternions56, but these were not tested in the current 
study.

The second term in the cost function (1) is g(path), which parameterizes the 
properties of the non-canonical RNA motifs and helices that comprise the path at 
each stage of the calculation:

gðpathÞ ¼ SssðpathÞ
2

þ 2Nmotifs ð4Þ

where Sss is a secondary structure score for all the motifs and helices in the path. 
This Sss term favours longer canonical helices as well as motifs with frequently 
recurring base pairs, as follows. All the base pairs found in the RNA motif are 
scored based on their relative occurrences in all the high-resolution crystal 
structures; all the unpaired residues receive a penalty and Watson–Crick base pairs 
receive an additional bonus score (Supplementary Table 9). Values were derived 
based on logarithms of the frequencies of these elements in the crystallographic 
database, that is the inverse Boltzmann approximation57, so that that the frequency 
of the elements in RNAMake designs was similar to that seen in natural RNA 
tertiary structures. In addition to the secondary structure score, Nmotifs penalizes 
the total number of motifs in the path, here taken as the number of non-canonical 
motifs plus the number of helices (independent of the helix length).

The search adds motifs and helices to the path in a depth-first manner, and 
as the total cost function f(path) decreases, the back-tracking of f(path) increases. 
Any solutions with h(path) less than five, that is, overlap at approximately 
nucleotide resolution between the path’s last base pair and the target base pair, 
are accepted into a list of final designs. The balance between g(path) and h(path) 
allows RNAMake to reduce the number of motif combinations considered and 
find most solutions in a few seconds. For each solution, we then used EteRNAbot, 
a secondary structure optimization algorithm that has undergone extensive 
empirical tests24, to fill in the helix sequences.

Proteins that are included in the coordinates supplied to RNAMake are 
represented as steric beads centred at the Cα atom of each amino acid. This 
representation allows RNAMake to avoid steric clashes with proteins, particularly 
for the ribosome tethering problems.

Design, synthesis and experimental testing of miniTTR constructs. RNAMake 
designs of miniTTR constructs, in vitro synthesis and experimental testing are 
given in the Supplementary methods.

Design, construction and experimental testing of ribosome tether constructs. 
RNAMake designs of ribosome tether constructs, cloning and replacing wild-type 
ribosome and experimental are given in the Supplementary methods.

Design, synthesis and experimental testing of aptamer-stabilizing constructs. 
RNAMake designs of ATP- and Spinach-stabilized constructs and experimental 
testing by RNA structure probing, fluorescence measurements, Spinach-TTR 
stability assay in Xenopus egg extract and in vivo Spinach aptamer testing are given 
in the Supplementary methods.

Data availability
The data that support the plots within this paper and other findings of this study 
are available from the corresponding author upon reasonable request. Furthermore, 
all of our chemical mapping data are available on https://rmdb.stanford.edu, and 
a detailed table of the accession identifications is given in the Supplementary 
Information.
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