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Industrial application of microorganisms as cell facto-

ries for production of fuels, chemicals, enzymes, food 
ingredients, and protein therapeutics generally requires 
development of production strains with improved proper-
ties (e.g. strains with a higher product yield). However, 
since microorganisms have naturally evolved to perform a 
myriad of operations required for cellular growth and 
fitness within their environment, achieving desired phe-
notypes that are, in general, not the “Darwinian opti-
mum”, presents a formidable challenge. Given the com-
plex nature of the catalytic inventory, metabolic pathways, 
signaling circuits, and regulatory networks of microor-
ganisms, it is important to develop rational approaches to 
understand this complexity and optimize for preferred 
characteristics. Rewiring the cellular control elements of 
microbial metabolism and regulation through targeted 
genetic changes using recombinant DNA technology - 
termed metabolic engineering - is one rational approach 
to design cell factories [1-4].  
Metabolic engineering seeks to design microbial strains 

with improved phenotypic behavior by exploiting meta-
bolic flux networks in an iterative strategy proceeding 
through: (1) characterization, (2) analysis, and (3) de- 
 

G`çêêÉëéçåÇáåÖ=~ìíÜçê 
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sign (Fig. 1). As a function of transcription, translation, 
post-translational modification, signal transduction, pro-
tein-protein interaction, and protein localization [5], 
metabolic fluxes represent the final outcome of cellular 
regulation. Therefore, understanding the mechanisms 
which control how carbon sources are transformed 
through an intricate series of biochemical reactions can 
provide critical insight into the origin of strain distin-
guishing characteristics (Fig. 2). In the metabolic engi-
neering design cycle, mathematical modeling and analysis 
of the cellular flux patterns are first used to map and 
identify factors conferring phenotypic traits of interest. 
Based on this model guided assessment, improved strains 
with altered metabolic flux networks are designed, and 
subsequently constructed through the introduction of 
targeted genetic changes using recombinant DNA tech-
nology or environmental perturbation [6]. Targeted changes 
are evaluated and characterized for their ability to achieve 
desired phenotypic landscape and the cycle is either con-
tinued or terminated depending on the overall objective 
for strain performance. Insights leading to desired prop-
erties can even be transferred from one organism to an-
other. Numerous examples of metabolic engineering, 
such as terpenoid production in Escherichia coli [7], ly-
copene production in E. coli [8], and improving galac-
tose utilization by altering a regulatory network of Sac-
charomyces cerevisiae [9] have illustrated the power of 
this approach. 
One of the major limitations of metabolic engineering 
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Fig. 1. An iterative strategy for cell factory design. In this schematic, an original strain is engineered to overexpress a specific product 
by directing the carbohydrate substrate through metabolism as shown. Circle, metabolite. Ei, enzyme. Square, regulatory protein. 
Arrows indicate reactions. Dotted arrows indicate activation/up-regulation and  arrows indicate repression/down┬ -regulation. Ar-
row thickness depicts the relative flux magnitude increased in the cell factory having the desired strain performance. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Visual representation of the complex nature of the catalytic inventory, metabolic pathways, signaling circuits, and regulatory 
networks of microorganisms. The overall phenotypic response is characterized by numerous interactions which propagate from the 
genetic architecture through the metabolic flux network. DNA (the genome) is transcribed to mRNA (the transcriptome) and trans-
lated to proteins (the proteome). Subsequently, post-translational modifications expand the size of the proteome. Proteins (Pi) help 
determine cellular function by carrying out enzymatic functions that convert small molecule substrates (S) into metabolites (Mi) and 
products (P). In addition, proteins interact with other proteins (P4:P5) and DNA (P6:DNA) (the interactome). While not depicted, 
the location of proteins within specialized compartments also impacts the regulatory structure of the cell (the locasome). Proteins and 
metabolites make up a complex network of players that can both activate ( ) and inhibit ( ) other processes in the cell. These reg↑ ┬ u-
latory interactions are noted with dotted lines in the figure. 
 
 
is the lack of experimental and theoretical information 
describing regulatory and/or kinetic information upon 
which decisions are based. Specifically, it is often difficult 
to predict the overall consequences, especially secondary 
and non-linear effects, of a specific genetic or environ-

mental modification to the fluxes dictating cellular me-
tabolism [10]. To overcome this limitation, a global ap-
proach, which integrates the regulatory structure and 
coordinated activities of multiple cellular processes is re-
quired.  
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Recently, significant progress has been made in analyz-
ing cellular function with quantitative high-throughput 
measurements of characteristic cellular components (e.g. 
genes, mRNA, proteins, metabolites) [11], linking inter-
actions between cellular components by computational 
algorithms [12-14], and constructing stoichiometric 
models that accurately represent metabolic networks 
[15,16]. These developments have given researchers key 
tools to help understand and decipher mechanisms un-
derlying cellular function. Coined ‘systems biology’, 
quantitatively describing properties of biological systems 
through integration of cell-wide measurements (e.g. 
quantifying genome-wide mRNA abundance levels) holds 
significant promise for developing predictive models that 
facilitate drug discovery, treatment of diseases, and im-
prove bioprocesses [17-22]. By providing insight into the 
functional and regulatory behavior of the metabolic flux 
network, systems biology tools will enable metabolic en-
gineers to gain a more quantitative link between genotype 
and phenotype than previously possible [18,20].  
Of the numerous high-throughput tools that exist to 

probe cellular response to different perturbations (e.g. 
genetic variance or altered growth conditions), genome-
wide transcriptional profiling is used most prolifically. 
Transcriptome analysis enables the simultaneous meas-
urement of thousands of mRNA levels in parallel for the 
identification of up- and down-regulated genes. The ap-
plication of microarray technologies as a diagnostic of 
cellular status [23-25] and tool to discover and assign 
function to unknown ORFs [26] has witnessed a dra-
matic expansion in the past few years. Moreover, use in 
metabolic engineering applications has also been reported 
[27-29]. Despite showing some promise in mapping phe-
notypic topography, use of DNA microarrays in meta-
bolic engineering has been shown to be limited by three 
main factors. First, mRNA profiles do not explicitly re-
flect downstream cellular responses (i.e. protein activity 
or metabolic fluxes), making it difficult to identify the 
genetic basis for strain performance. Second, it is diffi-
cult to separate biological from non-biological (noise) 
changes in expression. Third, isolating the effects of a 
single variable of interest which will reveal useful infor-
mation for future metabolic engineering (i.e. specific ge-
netic perturbations) through appropriate experimental 
design is challenging. As a result, expression levels of 
hundreds of genes may be altered that are not a direct 
result or cause of the phenotype of interest.  
To address these limitations, new principles are being 

developed with the objective to reveal the genetic archi-
tecture responsible for specific phenotypes. This review 
focuses on this aspect, and particularly we concentrate on 
the role of high-throughput transcriptome analysis within 
a metabolic engineering framework. We discuss examples 
of employing DNA microarrays in metabolic engineering, 
highlight the importance of rational experimental design 
strategies, consider several key questions dealing with 
conventional transcriptome data generation and analysis, 
and describe new approaches designed to incorporate 
mRNA expression data with genome-scale metabolic mod-
els to infer global regulatory patterns. We also underscore 

the ambitious challenge of modeling biological complexity, 
and comment on the future outlook of omics data inte-
gration in metabolic engineering.  
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The use of mRNA profiling in metabolic engineering to 

extract genotype-phenotype relationships has not experi-
enced the same explosion of successfully documented 
stories as more general analysis of genetic networks [30-
33]. However, in the framework of designing cell facto-
ries, identification of critical effectors linked to, or re-
sponsible for, specific phenotypes have been reported. To 
identify targets for metabolic engineering, genome-wide 
expression patterns for two or more strains with different 
aptitudes for a preferred trait (e.g. an antibiotic overpro-
duction strain and its parent) are typically compared. 
While not the focus of this review, genomic disruption 
and plasmid based strategies (e.g. parallel gene trait map-
ping, [34]) have also been developed to screen for trait 
conferring effectors (see [27,35] for review). 
To characterize features responsible for ethanol toler-

ance in E. coli, Gonzalez et al. compared a strain evolved 
by directed evolution to be resistant to ethanol with a 
strain designed for ethanol overproduction [36]. Careful 
investigation of six distinct growth conditions established 
differentially expressed genes between the strains in mul-
tiple branches of metabolism. Pathways surrounding gly-
cine degradation, osmotic stress, the mar multiple drug 
resistance system, and gene products regulated by FNR 
were identified as significant for ethanol tolerance. Along 
with further investigations, these observations indicated a 
genetic basis for tolerance and suggest strategies for fu-
ture metabolic engineering of ethanol overproduction 
strains.  
In addition to investigating the difference between 

strains developed by molecular breeding strategies, there 
is also strong interest in using genome-scale mRNA pro-
filing to characterize phenotypes obtained by classical 
strain improvement programs (e.g. chemical mutagene-
sis). This strategy has been applied to unravel the ration-
ale behind desired phenotypes which are caused by un-
known mutations. In one case, Lum et al. explored dis-
criminatory gene expression patterns to characterize an-
tibiotic overproducing strains [37]. First, transcriptional 
profiles of industrial overproducing strains for erythro-
mycin (Saccharopolyspora erythraea) and tylosin (Strep-
tomyces fradiae), and their respective parent (non-
overproducing) strains, were obtained from batch growth 
experiments. Second, prominent differences between the 
two sets of gene expression data were shown to result in 
two distinct regulatory control structures. In one scheme, 
the genes encoding the erythromycin biosynthetic cluster 
were co-expressed for a longer period of time in the S. 
erythraea overproducing strain relative to the parent. Al-
ternatively, while the expression pattern for genes encod-
ing the tylosin biosynthestic cluster were similar in both S. 
fradiae strains, several genes, including some involved in 
precursor biosynthesis, had altered expression levels. 
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Thus, the flux of metabolite building blocks entering the 
tylosin biosynthetic pathway is likely increased. The two 
control strategies described above suggest potential 
metabolic engineering targets that influence the overpro-
duction of antibiotics.  
To gain insight into the xylose utilization pathway of a 

metabolically engineered strain of S. cerevisiae, mRNA 
expression profiles were used to characterize differences 
in transcription levels between the engineered parent and 
variant generated from chemical mutagenesis [38]. Since 
the mutant strain boasted a higher growth rate on xylose 
relative to the parent strain, this comparison was in-
tended to identify gene targets involved in increased xy-
lose utilization rates. Transcriptome analysis identified a 
number of candidate genes with altered expression levels 
between the two strains. From this wealth of biological 
information, Wahlbom et al. pursued only one, PET18 
(which encodes a transcriptional regulator reported to be 
an effector of growth on non-fermentable carbon sources), 
for a more thorough investigation. Unfortunately, xylose 
growth was unaffected by either deletion or overexpres-
sion of PET18. This report highlights the frustrating fact 
that differential gene expression alone may not indicate 
how the control structure of the metabolic flux network 
has changed.  
To date, the most successful strategy to reveal targets 

for metabolic engineering through genome-wide expres-
sion techniques has been to analyze a collection of strains 
(rather than just 2) comprising of a desired phenotype to 
identify discriminatory genes involved in the metric for 
strain performance. In one example, association analysis 
of transcriptional and metabolite profiles from a library of 
unsequenced Aspergillus terreus fungal strains were inte-
grated to discover the essential parameters and genes 
influencing the biosynthesis of lovastatin and (+)-Geodin 
(two commercially relevant natural products) [39]. First, 
a diverse collection of strains was generated with varying 
capacities to produce lovastatin and (+)-Geodin. Second, 
DNA microarrays and high-performance liquid chroma-
tography were used to characterize transcript and me-
tabolite profiles of these strains. Third, the genetic 
mechanisms that control the biosynthesis of lovastatin 
and (+)-Geodin were revealed by expressing transcrip-
tional and metabolite data as ratios with respect to the 
parental reference strain and then correlating these ratios 
to product titers using Pearson correlations and principal 
component analysis (PCA). To design for improved lovas-
tatin titers, Askenazi et al. went on to show that specific 
promoter sequences, which correlate to lovastatin biosyn-
thesis, could be fused to antibiotic resistance genes in 
order to select for strains with improved antibiotic resis-
tance, and consequently, lovastatin production. Subse-
quent engineering of desired strains led to an improve-
ment of lovastatin biosynthesis by more than 50%. 
To improve flux through the galactose utilization path-

way in S. cerevisiae, Bro et al. used DNA microarrays to 
compare the genome-wide transcription profiles of three 
strains with different capacities to utilize galactose as a 
carbon source (Bro et al., submitted). Previously, the 
regulatory architecture of the Leloir pathway had been 

engineered in two of these strains to increase the maxi-
mum specific galactose uptake rate relative to the wild 
type strain [9]. Initial mRNA profiling analysis did not 
uncover underlying mechanisms for genes associated 
with galactose uptake rates. However, further examina-
tion of a smaller subset of genes known to be directly 
involved in the galactose uptake system singled out 
PGM2, the major isoform of phosphoglucomutase, as 
having a high probability of being significantly changed. 
Consistent with this observation, overexpression of the 
PGM2 gene resulted in a 70% increase in the maximum 
specific galactose uptake rate as compared to the wild 
type. 
Collectively, these studies highlight three critical les-

sons of using transcriptional information for the design 
of cell factories. First, metabolic engineering strategies 
can directly exploit insights gained through genome-wide 
transcriptional analysis for generation of desired strains. 
Information gained through microarray analysis contrib-
utes to a better understanding of cellular organization 
and offers the ‘possibility of elucidating global regulatory 
processes’ [40]. Second, the underlying assumption that 
mRNA profiles can identify key genetic trends that may 
be critical for understanding cellular flux and regulation 
is in many cases, misleading. This is not to downplay the 
important role that transcriptional analysis can play in the 
design of cell factories, but rather to accentuate the fact 
that the cell has more than just one level of control to 
alter the flux network. Third, since many expression lev-
els are often changed, analysis is typically guided by pre-
conceived notions of cellular physiology, in which mRNA 
levels of pathways already known to be important in a 
particular phenotype are scrutinized while some of the 
entire genome-scale information is discarded in the search 
for new targets. 
To gain a more detailed description of cellular response 

to specific perturbations, researchers are beginning to 
more readily incorporate the study of two or more omic 
responses simultaneously [41]. This was first reported by 
Ideker et al. as strategy to provide evidence for the ex-
plicit physiological interactions governing cellular re-
sponse in the galactose utilization pathway of yeast [13]. 
Here, DNA microarrays, proteomics, protein-protein inter-
actions, and protein-DNA interactions were integrated to 
map regulatory phenomena and suggest new hypotheses 
that attempt to dissect the hierarchy of interconnections 
which describe cellular complexity. More recently, use of 
high-throughput analytical approaches have been ex-
tended to metabolic engineering applications. These 
studies have only further solidified the disparity between 
mRNA levels and protein levels and/or in vivo metabolic 
fluxes and stress the importance of integrating several 
cell-wide measurements to garner a comprehensive view 
of the biological system in question. 
Daran-Lapujade et al. compared genome-wide tran-

script levels with in vivo fluxes obtained using a recon-
structed genome-scale model to characterize growth and 
regulation through central carbon metabolism in S. cere-
visiae [42]. To isolate changes in metabolism caused by a 
single change in growth nutrient (glucose, maltose, etha-



_áçíÉÅÜåçäK=_áçéêçÅÉëë=båÖK=OMMRI=sçäK=NMI=kçK=R= PUV=

 

nol, or acetate), chemostat cultivation was employed. 
Comparison of mRNA profiles for genes that encode en-
zymes corresponding to estimated in vivo metabolic 
fluxes indicated that seldom are the two precisely corre-
lated. While there was a strong correspondence between 
the flux distribution and transcriptional regulation for 
gluconeogenesis and glyoxylate cycle (pathways known to 
be tightly controlled at the transcriptional level), robust 
association accounted for only a relatively small percent-
age of the assembled data. Specifically, significant vari-
ance was observed for glycolysis and the tricarboxylic 
acid cycle. The study underscores that transcriptional 
data on their own have a limited capability to discover 
phenotype, since they do not necessarily provide a good 
litmus test for in vivo activities downstream of transcrip-
tional regulation. In relation to this study, the data pro-
vided suggest that post-translational modification plays 
an important role in the phenotypes observed. 
Consistent with the results presented above, Tummala 

et al. demonstrated that the overall correlation between in 
vivo fluxes and the transcriptome is, in general, weakly 
positive [43]. By comparing strains with different capaci-
ties to produce butanol and acetone, they combined the 
use of fluxome and transcriptome analysis to investigate 
the genetic basis controlling organic solvent production 
in recombinant Clostridium acetobutylicum strains. Simi-
larities and discrepancies between these omic responses 
were used to suggest flux-controlling steps, regulatory 
mechanisms, and metabolic engineering targets (such as 
acid uptake via the CoA transferase pathway or the pos-
sible control of alcohol production on the ferredoxin oxi-
doreductase). By assuming that protein concentrations 
would only need to be altered at flux-controlling nodes, 
transcriptional analysis can help to identify rate-determining 
steps.  
Correlating genome-wide transcriptional levels with 

proteomic responses to specific perturbations has also 
been pursued. Yoon et al. sought to systematically under-
stand the physiological and metabolic changes that occur 
as a result of high cell density cultivation in E. coli by 
integrating transcriptomic data with information content 
obtained from 2D-gel electrophoresis coupled with 
MALDI-TOF MS [44]. While several discrepancies ex-
isted, the patterns between the two were mostly similar 
when comparing protein spots with differentially ex-
pressed mRNA levels. Although these results contrast 
with previous reports regarding the similarity of tran-
scriptional and translational response [13,45], it substan-
tiates the claim that cellular responses are elegantly linked.  
Strategies described in the literature for direct use of 

transcriptome data have been extremely profitable in 
demonstrating how to identify targets for metabolic engi-
neering and for allowing researchers to recognize the 
limitations of these approaches which on their own, only 
reveal the genetic expression architecture of the cell. 
These, as stand alone principles, are applicable to a num-
ber of problems under investigation. However, since phe-
notype is not always directly translatable from transcrip-
tomic data due to the complexity of cellular regulation, 
mRNA profiling alone is not the answer for metabolic 

engineering. Clearly, our incomplete understanding of 
how biochemical flux networks are connected within the 
cell compounds the problem. Improved tools for integrat-
ing transcriptional data with other omic responses, and 
extracting information from transcriptional data are 
emerging. They hold significant promise for revolutioniz-
ing the field of metabolic engineering. To provide the 
relevant background for understanding these tools, we 
now shift our focus towards conventional generation and 
analysis of transcriptome data.  
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The first step in generation of transcriptome data is se-

lection of a microarray platform. DNA technologies are 
based on the hybridization of labeled RNA or DNA pre-
pared from extracted cellular mRNA to highly ordered 
DNA sequences attached to a solid matrix [25,33,46]. 
While many array technologies exist, spotted DNA mi-
croarrays and high-density oligonucleotide microarrays 
(commercially available from Affymetrix) are most widely 
used [47,48].  
After selection of the appropriate array technology, ex-

perimental design must be considered. The design proc-
ess should not only clearly define the biological question 
and/or hypothesis, but also anticipate the focal point of 
data analysis. Data analysis typically centers on compara-
tive profiling of expression patterns under particular con-
ditions (e.g. over a time series or during cell cycle stages), 
identification of relevant genes associated with a desired 
phenotype, or genetic responses to perturbations. In ad-
dition to anticipating data analysis, the experimental 
strategy must also ensure that enough biological repli-
cates are taken to ensure statistical significance. It has 
been shown that the number of false negatives among the 
significant changing genes increases linearly when the 
number of biological replicates decreases [49]. 
When studying the effect of a genetic or environmental 

perturbation, it is important that all conditions, except 
those under investigation, are kept constant. Here, we 
emphasize two obstacles to achieving this objective. First, 
mRNA levels are known to change with the specific 
growth rate [50,51]. Second, mRNA profiles are influ-
enced by the dynamic nature of batch cultures (i.e. differ-
ent media component concentrations over time) [42]. To 
illustrate the latter, Daran-Lapujade et al. only found 117 
significantly changed genes by exploring the expression 
level changes of yeast chemostat cultures grown on 4 dif-
ferent carbon sources (glucose, maltose, ethanol, or ace-
tate). In stark contrast, previously reported data compar-
ing batch cultures grown on glucose and ethanol alone 
found up to 600 significantly changed transcripts [52]. 
This underscores how effects inherent to batch cultures 
can obscure the parameter under examination. In light of 
these results, it is preferable to use chemostat cultures 
rather than batch cultures for evaluation of different envi-
ronmental conditions or different mutants [53]. One cau-
tionary note: in the case of organisms with different 
metabolic modes (e.g. both respirative and respiro-
fermentative growth under aerobic conditions), mutants 
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Fig. 3. Common tools used to attain biological significance and 
understanding from high-throughput transcription data. This 
roadmap serves to highlight key strategies to uncover the rela-
tionship between genotype and phenotype. 
 
 
may present different metabolic modes at the same spe-
cific growth rate. This may distort evaluation of single 
parameters in chemostat cultures performed at the same 
growth rate. Again, appropriate experimental design 
should be taken into consideration to minimize the influ-
ence of non related factors.  
Once the appropriate microarray technology and ex-

perimental design have been selected, several experimen-
tal steps need to be performed to attain an array image 
that can be used for further analysis. These steps include: 
1) implementing the desired experiment 2) collecting cell 
samples 3) extracting, labeling, and hybridizing RNA to 
the microarray, and 4) scanning the microarray chip to 
obtain an image. These steps have been outlined by oth-
ers [54]. 
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The generation of microarray images is the first step in 

gene expression analysis. Before performing gene-to-
gene comparisons among samples, other pre-processing 
steps are often necessary. In this section we describe 
these steps and highlight the important decisions to be 
made (Fig. 3). We focus our description on methods 
dealing with Affymetrix® microarray images. These oli-
gonucleotide arrays provide quantification of mRNA lev-

els through the use of perfect match (PM) and mismatch 
(MM) probes. Each gene has several oligonucleotide 
probes and the intensity of a gene is given by an “aver-
age” intensity of the respective probe-set.  
 
kçêã~äáò~íáçå=
Microarray data analysis is based on the underlying 

hypothesis that the measured intensity for each probe-set 
represents the relative expression level of its correspond-
ing gene. To ensure comparability between microarrays 
under investigation, it is advisable to follow the MIAME 
international standards [55], to use identical arrays, and 
to use equivalent amounts of sample per array. In addi-
tion, before comparing gene expression data between 
arrays, a number of transformations must be carried out 
to adjust the measured intensities and identify low-quality 
microarrays. This step is called normalization [56-60]. 
Microarray normalization includes both methods to cor-
rect for overall brightness and methods to remove an of-
ten observed systematic signal-dependent bias. Non-
linear methods (e.g. iteratively search of an invariant set 
[60] and qspline [58]) are generally preferred over linear 
methods. 
 
bñéêÉëëáçå=fåÇÉñ=`~äÅìä~íáçå=
Once the signals of all oligo probes are normalized, the 

overall intensity of a given gene from the individual inten-
sities of the oligo probes in the respective probe-set is 
calculated. There are a few different ways to perform this 
data condensation, and they may lead to different results. 
The easiest way, as calculated by the early version of Af-
fymetrix® software (MAS 4.0), is by simple average of all 
probes signal (not including probes that deviate more 
than three standard deviations from the mean). More 
advanced methods are used to calculate weighted aver-
ages. For example, Li and Wong [61] developed an ex-
pression index calculation algorithm which multiplies 
each probe signal by a scaling factor obtained by fitting a 
statistical model to the series of experiments being ana-
lyzed. This approach takes into consideration that differ-
ent probes may respond differently. Average calculation 
methods can be applied using either a PM-MM model 
(perfect-match minus mis-match) or a PM-only model. 
Affymetrix has included MM control probes to act as 
specificity controls, allowing correction for both local 
background and cross-hybridization [25]. Selection of a 
PM-MM model (difference between PM and MM inten-
sities) is therefore recommended by Affymetrix to detect 
significant signals. On the other hand, some authors [61-
63] have argued that subtracting MM to PM merely in-
creases the noise of the signal and hence support the use 
of PM-only models. Moreover, the MM response has 
been shown to largely reflect interaction with the in-
tended PM transcript [64].  
 
cáäíÉêáåÖ=íÜÉ=aÉëáêÉÇ=cÉ~íìêÉë=
After normalization and expression index calculation, 

expression intensities of each probe-set are comparable 
between different arrays. In most cases a probe-set corre-
sponds to a unique gene. However, in other cases, a gene 
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can be represented by several different probe-sets, and it 
may be convenient to calculate a unique expression value 
for that gene. Standard procedures include: summing all, 
averaging all, or choosing the most representative of the 
probe-sets. Subsequent filtering can also be used to re-
move data that will not be used in further analysis (e.g. 
probe-sets that are absent in the experiments) or select 
genes that will be targeted for investigation (which may 
be every transcript of well identified ORFs). Biologically 
relevant patterns of expression can next be identified by 
statistical significance analysis, clustering algorithms, or 
advanced methods integrating gene expression with bio-
logical knowledge. 
 
`çåîÉåíáçå~ä=^å~äóëáë=çÑ=qê~åëÅêáéíçãÉ=a~í~=
 

páÖåáÑáÅ~åÅÉ=çÑ=`Ü~åÖÉ=^å~äóëáë=
One of the important tasks in microarray analysis is the 

identification of genes that are significantly changed be-
tween different experimental conditions or between dif-
ferent strains. Notably, a fold-change in expression level 
is not always an indicator of significance. For example, 
the mRNA level of a certain gene might change only 1.5 
fold, but it may still be statistically significant.  
The main idea behind most of the statistical signifi-

cance tests is to assess whether two different groups of 
numbers (in this case-expression levels of a gene in repli-
cates for each condition/strain) have a similar mean. The 
most widely used test for this purpose is called the stu-
dent’s t-test. Several reports have also described im-
proved significance of change tests specifically designed 
for microarray data. In general, these methods attempt to 
capture and dilute the noise of the entire array data set in 
a systematic way. Examples include SAM (Significance 
Analysis of Microarray) [49] and VERA (Variability and 
ERror Assessment) [65]. Significance of change tests 
assign a probability value (p-value) for each gene under 
analysis. The p-value of a gene indicates the likelihood 
that the observed differential expression is by chance 
alone. Thus, the lower the p-value, the more significant 
the change. When comparing more than two data sets 
simultaneously, analysis of variance (ANOVA) is used. 
After assigning p-values, the next and equally impor-

tant step is to choose a p-value to be regarded as signifi-
cant. Usually p-value cut-off of 0.05 (95% confidence) is 
chosen. The choice of method for deciding an appropri-
ate p-value cut-off for microarray data is dependent on 
the objective and nature of analysis. Most methods at-
tempt to account for the effect of multiple testing (i.e. the 
probability of finding significant changes when same hy-
pothesis is tested several times). In general, if very few 
genes are expected to change during an experiment, a 
strict cut-off value based on a Bonferroni correction fac-
tor is preferred. Bonferroni correction is applied by 
choosing a new cut-off value obtained simply by dividing 
the desired p-value (e.g. 0.05) by the number of genes 
tested. This correction guarantees with 95% confidence 
that the number of false positives will be less than or 
equal to one. Although this strict measure is beneficial in 
certain cases, for many experimental studies a strict cut 

off may lead to several false negatives. A recent method 
presented by Storey and Tibshirani [66] offers a good 
alternative for choosing p-value cut-off based on false 
discovery rate. In the proposed method, a new measure 
of statistical significance called q-value is assigned to 
each gene and can easily be interpreted in terms of false 
discovery rate. The q-value approach leads to a less strin-
gent cut-off while maintaining a good balance between 
false positives and false negatives.  
 
oÉÇìÅíáçå=çÑ=aáãÉåëáçå~äáíó=
Genome-wide analysis of gene expression generates 

tens of thousands of data points with at least as many 
variables as measured transcripts. This high-dimensionality 
of gene expression data makes it difficult to visualize rela-
tionships between genes and grouping of experiments by 
similarity of expression profiles. Several methods exist to 
reduce the dimensionality of array data. These approaches 
facilitate visualization, allow for characterization of the 
data structure, and separate biological meaningful infor-
mation from noise. Examples of such methods are cluster 
analysis [23], multidimensional scaling [67], principal 
component analysis (PCA) [68], and singular value de-
composition (SVD) [69].  
Gene expression data can be represented in a matrix 

form, with each row of the matrix representing the ex-
pression profile on a given gene throughout the experi-
mental conditions, and each column representing the 
genome-wide expression in a given experiment. Methods 
such as multidimensional scaling, PCA, and SVD allow 
projection of rows and/or columns of the data matrix in a 
plane such that similar rows/columns are located close to 
each other, therefore allowing grouping of genes and/or 
experiments by similarity. 
Principal component analysis decomposes the original 

multi-dimensional space in a low-dimensional space of 
dimension n, where n is the number of principal compo-
nents. PCA identifies the direction in space that captures 
most of the variance, and this direction corresponds to 
the first principal component (PC1). The second princi-
pal component (PC2) is determined as being the vector 
orthogonal to PC1 that captures most of the remaining 
variance (and so on to determine other principal compo-
nents). Expression data can then be projected onto this 
low-dimensional space, whose axes are the principal 
components. Often, PC1 and PC2 retain most of the vari-
ance in gene expression data, making possible a two-
dimension visualization of the relationships between genes 
and experiments. An example of a two-dimensional PCA 
bi-plot is depicted in Fig. 4. 
A number of programs can be used to perform PCA. 

Both general data-mining software and gene expression 
analysis dedicated software are commonly used. For bet-
ter interpretation, it is convenient to mean-center and 
scale the data (i.e. transform each variable vector so it 
has mean 0 and standard deviation 1). Moreover, it may 
be convenient to perform PCA only on significantly 
changed genes. Although PCA decomposition “filters” for 
genes with high variance, this variance can be either due 
to noise or due to biological relevant changes in gene ex- 
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Fig. 4. Illustration of a PCA bi-plot for gene expression data. 
Loadings (gene transcripts) are represented by non-labeled 
dots; scorings (samples) are represented by labeled dots. The 
nine samples are distributed in three groups, suggesting the 
existence of three different groups of biological triplicates. 
 
 
pression. Consequently, reduction in the non-biological 
variance greatly facilitates interpretation of PCA. 
A PCA bi-plot depicts both loadings and scorings, that 

is, the projection of both genes and samples in the princi-
pal component space. Loadings contain information on 
how variables relate to each other, while scorings refer to 
how samples are related. Analysis of loadings tells us how 
the variance of a certain gene is explained by that princi-
pal component. Loading weights should be read in the 
principal component axis, and genes with high absolute 
values are the ones that contribute more for that compo-
nent. The distribution of the scorings tells us how the 
samples can be explained by the loadings. For example, a 
sample standing in the upper-right quadrant of a bi-plot 
is positively influenced by the genes standing also in the 
upper-right quadrant and is negatively influenced by 
genes in the lower-left quadrant. 
 
`äìëíÉêáåÖ=
Clustering is one of the first and widely used methods 

for analysis of large amounts of gene expression data 
[56,70,71]. The basic idea consists of grouping genes 
based on their similarity profile [23]. Genes sharing a 
common profile throughout a series of experiments clus-
ter together, and can be further analyzed as a unique 
group. Since this grouping organizes data into manage-
able clusters, it is also considered a dimension-reduction 
method. Notably, clustering has shown to exhibit a cer-
tain predictive power. When a gene with unknown func-
tion is assigned to the same cluster as genes with known 
function, the function of the unknown gene can be hy-
pothesized based on the ‘guilt-by-association’ concept. 
Furthermore, common regulatory motifs can be searched. 
Even though meaningful biological patterns are often 
identified, the reliability of cluster assignment should be 
statistically verified [72]. 
Metrics - Despite holding significant promise for 

providing an efficient description of transcriptome data, 
the ‘ill-defined’ definition for what makes expression 

‘ill-defined’ definition for what makes expression profiles 
between sets of genes similar is a significant challenge 
[73]. Commonly used metrics to assess gene similarity 
are based on distances or correlation functions. Values 
that make up the gene expression profiles are first defined 
as a series of coordinates that describe a vector. Then, 
typically one, of two, standard metrics - the Euclidian 
distance and the Pearson correlation - are used to assign 
similarity. The Euclidian distance measures the absolute 
distance between two gene expression vectors, taking in 
consideration both the direction and the magnitude of the 
vectors. The Pearson correlation measures the similarity 
of the directions of two gene expression vectors, being 
insensitive to the amplitude. Since we are often interested 
in grouping genes with similar expression patterns (even 
if they differ by a factor), and abundance levels are not 
truly comparable between two different genes (due to 
microarray design), the Pearson correlation is usually 
preferred. While the Pearson correlation has been shown 
to be a superior metric to the Euclidian distance 
[23,74,75], this correlation may assign an artificial high-
score to patterns that are not necessarily similar [70]. 
Other metrics, including shrinkage based similarity [76] 
and the jackknife correlation [77], have also been used.  
Hierarchical clustering - Once the appropriate metric 

is selected, a distance matrix can be calculated for all 
pair-wise distances among all genes. Genes can then be 
progressively joined based on similarity (highest similarity 
being equivalent to shortest distance). The method 
initializes by finding the two most similar genes, grouping 
them into a new node and updating the distance matrix 
to account for the average distance between both genes. 
The process is repeated until all genes are connected, 
forming a single hierarchical tree. This method is simple, 
reproducible, and easily visualized [23]. However, ac-
commodation of a new gene in a cluster as the tree ex-
pands may be less and less representative of the initial 
cluster pattern. Therefore, as hierarchical clustering goes 
up towards the root of the tree, the average of all profiles 
in a certain cluster may become less representative of the 
contained profiles. As a result, the number of clusters to 
consider should be assessed by visual inspection, based 
on the similar expression profiles at the desired distance 
cut-off. The disadvantage of this approach is that it is 
sensitive to outliers [78].  
Partitioning algorithms - To avoid the problems asso-

ciated with artifacts that arise during hierarchical cluster-
ing, partitioning (or relocation) algorithms such as K-
means clustering [23], self-organizing maps (SOMs) 
[75], Mixtures of Gaussians (MoG) [79], and super-
paramagnetic [80] have been applied to cluster analysis. 
In general these methods first partition the transcrip-
tional profiles into relatively homogenous groups, and 
then organize each of these partitioned groups into more 
detailed clusters containing similar expression profiles. 
Partition methods are fast and effective, but stochastic, 
meaning that initial random selection of the reference 
vectors may result in different clustering groups. More-
over, the tendency to yield different clusters, which con-
sequently describe different biological stories, increases
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Table 1. Comparison between data-driven and integrative approaches for identification of regulatory networks 

Method Advantages Disadvantages 

Data-Driven 
- Targets single gene patterns 
- Identifies co-regulated genes through ‘guilt-by asso-
ciation’ 

- Dead-end analysis 
- Difficult to separate biological noise from statistical 
noise 

Integrative 
- Uncovers hidden regulatory architecture 
- Combines innovative thinking across scientific disci-
plines 

- Requires reliable and global interaction models 
- Requires complex and expensive equipment for data 
generation 

 
 
with noise and an increased number of transcripts. One 
way to manage the ambiguity associated with different 
clustering algorithms is to apply several methods and 
search for emerging patterns [81]. Another, and perhaps 
more powerful, concept to more robustly and reproduci-
bly assign genes containing similar profiles is co-
occurrence (Grotkjaer et al., submitted). This approach 
consists of running the same stochastic problem several 
times to select consensus clusters (or co-occurrences) as 
the final solution.  
Clustering is relatively easy to perform; however, re-

gardless of the algorithm selected to identify similar gene 
expression patterns, the data will always be sorted into 
organized groups. Therefore, subsequent biological vali-
dation is required to confirm the observed sorting pat-
terns. These issues have been addressed to some extent 
[82-84] and new tools will continue to strengthen our 
ability to more effectively identify co-regulated genes by 
their patterns of expression. 
After associating genes with one another based on a 

specified similarity metric through clustering, several 
other analyses are often performed to more completely 
unveil the regulatory structure of the cellular response 
under examination. While many techniques have been 
reported, we highlight three schemes. Promoter analysis 
can be used to identify transcription factors involved in 
co-regulated responses [43,52,85-88]. Second, gene lo-
calization and overrepresentation within particular sec-
tions of the chromosome can be explored (Grotkjaer et 
al., submitted). Third, the function of genes with un-
known function can be predicted based on similar expres-
sion patterns of known genes [89]. 
 
fåíÉÖê~íáåÖ= qê~åëÅêáéíçãÉ= a~í~=ïáíÜ= håçïå= _áçäçÖáJ
Å~ä=fåÑçêã~íáçå=
 
As just described, several statistical methods and clus-

tering algorithms are available to dissect regulatory mecha-
nisms from genome-wide expression datasets. Most of 
these methods are data-driven. They attempt to uncover 
hidden correlations in the data by using data alone. In 
principle, these strategies assume that transcriptionally 
co-regulated genes show similar expression patterns or 
correlation. Consequently, while searching for similar 
expression patterns, all mRNAs are allowed to interact 
with all other mRNAs in the entire solution space (tran-
scriptome data set).  
Although data-driven algorithms have been shown to 

enable the discovery of new and unexpected biological 
interactions, these methods often fail to explain the ob-
served physiology/phenotype solely using gene-expression 
data [14,90,91]. From a mathematical perspective, the 
high degrees of freedom make these algorithms sensitive 
to noise in the data (either experimental or biological). 
Consequently, relatively weak, but biologically significant, 
correlations/patterns may be overshadowed by stronger 
but biologically insignificant and/or noisy correlations. 
The natural way to overcome this problem, and facilitate 

identification of potentially important strain distinguishing 
features, is to reduce the degrees of freedom in the data-
analysis by using known biological interactions, stoichiomet-
ric constraints, and/or network structure. The whole cell 
system can be seen as a complex web of molecular inter-
actions (Fig. 2). Such interactions may arise from physi-
cal contact between molecules/groups of molecules (e.g. 
protein-protein, protein-DNA interactions etc.) or as a 
result of functional coupling between groups of molecules 
(e.g. genes belonging to a regulatory pathway, genes in 
an operon etc.). Here, we describe emerging strategies 
which seek to integrate known biological information 
with genome-wide transcriptional data. These approaches 
have not only provided insights into regulatory themes, 
but also facilitate a more detailed snapshot of active bio-
molecular pathways.  
To characterize regulatory principles governing meta-

bolic ‘pathways,’ several studies have explored expression 
patterns in the context of metabolic flux network struc-
ture. Expression patterns of genes belonging to a group 
of interacting components have been shown to be signifi-
cantly similar relative to a set of randomly chosen genes 
for genes belonging to a metabolic pathway [12,32,92-
95], genes belonging to a particular functional class as 
defined by gene ontology databases [96,97] or genes be-
longing to a cluster of interacting proteins [98]. Ihmels et 
al. [12] demonstrated the existence of transcriptional 
control at multiple levels by showing that expression is 
also biased towards linear pathways and that isozymes 
are regulated separately (preventing cross talk between 
different pathways). Collectively, these studies provide 
evidence that metabolic pathways, or at least segments 
associated with a specific biological function, are co-
regulated. While this hypothesis is not new, it reiterates an  
important design principle for strain development programs.  
Consistent with the concept that biological processes 

occur in cooperation to fulfill cellular objectives, similar 
studies have also pointed towards the same regulatory  
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Fig. 5. Illustration of two methods that integrate topographic 
information with transcriptome data. A) Topography of the 
system, representing both the metabolic network and the mo-
lecular interactions network. Mi represents the metabolite i¸ 
which is converted into another metabolite through the enzyme 
Ej (in blue). Regulatory and sensing proteins are represented by 
Pk (in yellow). Black arrows indicate reactions, while grey ar-
rows indicate activation/up-regulation and T arrows indicate 
repression/down-regulation. B) Fold changes and P-values cal-
culated from a simulated experience between a reference strain 
and a P3 knockout mutant. Fold changes for down(up)-
regulated genes are in green (red). C) High-scoring molecular 
interaction sub-network calculated for the pathway in grey (as 
in A), using Ideker et al. algorithm [105]. All interactions in the 
high-scoring sub-network do actually represent protein-DNA 
interactions (direction given by the yellow arrow). D) High-
scoring metabolic sub-network calculated for the pathway in 
black (as in A), using Patil et al. algorithm [14], and corre-
sponding reporter metabolites. Reporter metabolites highlight 
the fact that the most significant changes occurred around the 
metabolites M1 and M5. 
 
 
motifs. Zien et al. [93] and Pavlidis et al. [94] described 
co-regulation by characterizing pathways in the frame-
work of gene expression patterns with a score that pro-
vides transcriptional significance of pathway under the 
given experimental conditions. Moreover, Shuster et al. 
[99] described flux co-regulation by combining metabolic 
network structure with expression data to demonstrate 
that sets of required enzymes which operate to satisfy 
mass balance constraints have similar expression profiles. 
Stelling et al. [100] extended this theory by quantitatively 
predicting expression patterns based on stoichiometry 
alone. By showing that theoretically predicted gene ex-
pression ratios in E. coli agree with the experimental ob-

servations, this study represents an important step to-
wards development of the predictive metabolic models. 
Similar results have also been reported for S. cerevisiae 
metabolic network [101]. To aid in the development of 
tools to analyze transcriptome data, strategies have been 
developed to display or assess up/down regulation of 
genes in the context of metabolic networks [92,102]. 
Unfortunately, methods based on genome-scale meta-
bolic models are limited to organisms where a complete 
and accurate roadmap of metabolism is known. 
Parallel to the methods based on metabolic stoichiome-

try, many studies have reported that the supervised learn-
ing methods, like support vector machines [89] and su-
pervised neural networks [96], improve functional classi-
fication based on genome-wide transcription profiles. 
These findings, again, support the need to complement 
gene expression data analysis with methods that account 
for underlying biological interactions.  
Although the approaches described above to identify 

transcriptional regulation of metabolic flux networks at-
tempt to put gene expression data in the perspective of 
metabolic pathways, there are two major limitations of 
these methods. First, they rely on the definition of me-
tabolism as a group of pathways where each pathway is 
treated as a distinct entity, often borrowed from textbook 
definitions. This is a major limitation considering the re-
cent studies on metabolic network topology [103,104] 
that show that metabolic networks are highly connected 
through various co-factors and small molecules, and con-
sequently cannot be, in general, reduced into “pathways”. 
Second, these methods help more in visualization or 
explaining known interactions/observations rather than 
generating new hypotheses.  
We recently reported a novel algorithm to study of 

transcriptional regulation of metabolism through the in-
tegration of mRNA expression data and metabolic net-
work topology [14]. This method reports two contribu-
tions that hold significant promise for metabolic engineer-
ing applications. First, the algorithm defines ‘so-called’ 
reporter metabolites, which might be functionally related 
to the perturbation affecting the system under investiga-
tion (e.g. genes that have been knocked out). In this 
manner, the global role of a metabolite is inferred from 
mRNA expression patterns and metabolic network topol-
ogy without direct measurement of metabolite concentra-
tion (Fig. 5). Second, the algorithm identifies the most 
highly correlated metabolic subnetworks to postulate po-
tential metabolic interactions that current methods may 
fail to capture. The authors also demonstrate that the 
proposed algorithm is robust towards the missing infor-
mation in the metabolic models, a limitation of previous 
attempts. In a biological context, it appears that cells re-
spond to perturbations by changing the expression pat-
tern of several genes involved in the specific part(s) of the 
metabolism where a perturbation is introduced. Due to 
the highly connected metabolic network, these changes 
are then propagated through the system. The essence of 
these changes is reflected in and quantified by reporter 
metabolites and subnetworks identified. Since cellular 
response to genetic and environmental perturbations is 
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often reflected and/or mediated through changes in the 
metabolism, the reporter algorithm can be effectively 
used not only to identify regulatory modules but also for 
functional genomics and cell factory design. 
The pioneering work of Ideker et al. [105] demon-

strated a significant advance for integration of molecular 
interaction networks with gene expression data analysis 
to discover transcriptional regulatory subnetworks (Fig. 
5). The study showed that existing knowledge about pro-
tein-protein and protein-DNA interactions could be used 
to extract regulatory modules using gene expression data. 
Similar ideas were presented in another study by the au-
thor [13] where the yeast galactose utilization pathway 
was analyzed from a systems biology perspective.  
In addition to methods which rely on experimental data, 

flux balance analysis (FBA) [106] and related approaches 
are being increasingly used for in silico prediction of 
fluxes and identifying metabolic engineering targets [107- 
110]. One of the major challenges for improving the ap-
plicability of such mass-balance based approaches is to 
account for the metabolic regulation. Availability of ge-
nome-wide gene expression data has opened new oppor-
tunities to integrate transcriptional level regulation into 
these models. Akesson et al. [111] used genome-wide 
transcription data to identify the genes that are not ex-
pressed in the study and used this information to impose 
additional on-off constraints into FBA. Interestingly, this 
simple approach improved the flux balance analysis pre-
dictions significantly, illustrating the need to integrate 
transcriptional regulation information into FBA models. 
Covert et al. [112-114] have also proposed Boolean-logic 
based incorporation of regulatory constraints into FBA 
and thus improving the quality of predictions. Such regu-
latory rules can be, e.g., formulated/curated based on 
existing gene expression datasets. 
 
mÉêëéÉÅíáîÉ= =
 
High-throughput transcription analysis offers much 

prospect in the field of metabolic engineering as it en-
ables rapid screening of which genes have altered expres-
sion at different growth conditions or in different mutant 
strains. However, we have seen relatively few applications 
of genome-wide transcription analysis for identification 
of new targets for metabolic engineering. Clearly this 
technology provides valuable insight into the physiology 
of the cells under study and hence is on the “nice to 
have” list of technologies applied in the field of metabolic 
engineering. Since it has shown to be of limited use in 
directly guiding metabolic engineering, it has not pene-
trated the field as strongly as one could have anticipated 
5∼6 years ago. One major reason for this is the relatively 
poor correlation between gene transcription and meta-
bolic fluxes - the latter being the focal point of most 
metabolic engineering exercises. Perhaps of even more 
importance is that even small changes in expression of a 
couple of genes may have significant impact on the op-
eration of the complete metabolic network, and identifi-
cation of small changes in expression of a few genes is 
not compatible with the high-throughput nature of the 

analysis. Hence, to move forward there is a requirement 
for development of novel methods that enable mapping of 
even small changes in the transcriptional level and par-
ticularly linking these to the different parts of the meta-
bolic networks. As discussed here, there are some devel-
opments in this area and the use of model guided data 
analysis may be a step in the right direction, but ap-
proaches where analysis of different omes are combined 
and the data are integrated into one analysis is surely also 
a way forward. Once we start to have such integrated 
data and novel methods for integration of these data we 
are confident that ome analysis, and particularly, high-
throughput transcription analysis will move from a “nice 
to have” tool to a “need to have” tool in metabolic engi-
neering. 
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