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1  Introduction

Today’s chemicals and materials are almost entirely
derived from fossil fuels and their products [1]. For exam-
ple, the petrochemical industry has historically focused
on seven low-cost, high-volume commodity chemicals
(methanol, ethylene, propene, butadiene, benzene,
toluene, xylene), from which nearly all other materials are
synthesized. The consequences of the petrochemical/

materials paradigm and the resulting world dependence
on fossil fuels include: (i) supply limitations due to
increasing and fluctuating prices and finite availability
[2], (ii) undesirable climate effects [3], and (iii) constraints
on materials innovation stemming from a limited set of
petrochemical building blocks [4]. While the petrochemi-
cal/materials paradigm will not be quickly replaced (if at
all), advances in our foundations for engineering biology
are poised to open access to novel chemicals and materi-
als based on a potentially richer palette of starting points
(i.e. more starting building blocks than the seven typical-
ly used today) [4]. This could lead to the production of
chemicals and materials with new attractive properties
and functions. In turn, novel, sustainable, and cost-effec-
tive technologies based on biological synthesis could be
realized that help meet the world’s increasing need for
fuels, pharmaceuticals, and commodity chemicals.
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In recent decades, the growth of industrial biotechnol-
ogy and metabolic engineering has shown a tremendous
potential to help meet the need for new chemicals and
materials [4]. Harnessing enzymes as robust, specific, and
efficient catalysts of chemical reactions [5, 6], cellular fac-
tories are being constructed to make complex reaction
 cascades within living organisms to produce a variety of
useful small molecules, peptides, and polymers [7–10]. In
addition to the achievements of first-generation bioethanol
[11], successful commercial bioprocesses have been
recently developed for the production of 1,3-propanediol
(Dupont Tate & Lyle) [12], polylactic acid (Cargill), and iso-
prenoids (Amyris) [13], among others. While the number
of microbial metabolic engineering success stories is rap-
idly growing [14], the fraction of biochemicals amenable
to economical production is still limited, requiring hun-
dreds of person-years of work to bring a single pathway to
market [15–17].

A major challenge to current microbial biomanufac-
turing practice lies with the inherent limitations imposed
by cells. It is virtually impossible to balance intracellular
fluxes to optimally satisfy a very active synthetic pathway
while maintaining the growth and maintenance needs to
the host. This leads to a variety of challenges afflicting the
current state-of-the-art. Yields of target molecules are lim-
ited to non-toxic levels (e.g. ~2.5% v/v butanol) [18] and

unwanted byproducts are common. Product excretion
and/or separation are constrained by intracellular trans-
port barriers (i.e. membranes). Scaling of lab-scale cul-
tures to the industrial level is hampered by heterogeneous
fermentation conditions [19]. The inability to control and
direct resource allocation (e.g. electron flux or ATP)
towards the exclusive synthesis of the target product can
result in poor volumetric productivities that limit eco-
nomic process viability. Additionally, the unwieldy com-
plexity of cells makes rational design unpredictable and
difficult to engineer [15, 20]. Put another way, current bio-
manufacturing efforts are limited by the need to balance
the tug-of-war that exists between the cell’s physiological
and evolutionary objectives and the engineer’s process
objectives.

Many efforts are underway to address the aforemen-
tioned challenges. In one example, the growing field of
synthetic biology offers new advanced tools and general-
ized capabilities to modify living organisms for process
engineering objectives. For example, our newfound abili-
ty to rapidly read, write, and edit DNA is accelerating the
pace of design-build-test loops for product development
[21].

Cell-free metabolic engineering (CFME) offers an
alternative, yet underutilized, approach. The foundation-
al principle of CFME is that precise complex biomolecular
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Figure 1. Paradigms for metabolic engi-
neering (A) sample pathway (B) tradi-
tional and cell-free approaches.
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synthesis can be conducted without using intact cells
(Fig. 1) [22, 23]. Instead, purified enzyme systems or crude
cell lysates are used, which can be accurately monitored
and modeled.

In this review, we focus on the emergence and growth
of CFME. Many overlapping terms have been discussed to
describe one-pot, cell-free, enzymatic pathways including
“synthetic pathway biotransformations (SyPaB) [24],”
“cell-free biosystems for biomanufacturing (CFB2) [25],”
“multi-enzyme processes [26],” “synthetic metabolic engi-
neering [27],” and “cell-free pathways/minimized reaction
cascades [28].” CFME encompasses many of these con-
cepts while emphasizing long pathways (>4 enzymes),
economical substrates, potential for industrial-scale pro-
duction, and rapid pathway prototyping and debugging
[23]. Other perspectives on tools for engineering complex-
ity in cell-free systems [29], as well as a broader discussion
of applications for cell-free biology [17, 23] are discussed
elsewhere. We begin with a brief introduction of the tech-
nological capabilities of the field and its potential advan-
tages for pathway debugging and biomanufacturing. In
the next section, we discuss state-of-the-art cell-free sys-
tems for small molecule metabolite production and path-
way optimization. Finally, we examine frontier applica-
tions, as well as associated challenges and opportunities.

2  Background

Activation of cell-free enzyme pathways has been possi-
ble for over a century. Indeed, seminal biochemical dis-
coveries of glycolysis (by Eduard Buchner) [30] and the
genetic code (by Nirenberg and Matthaei) [31] used cell
extracts, or lysates, from yeast and Escherichia coli,
respectively. In other examples, the catalytic proteins of
metabolic pathways have been purified from living cells
to elucidate and understand their biological activity, as
well as to harness them for industrial purposes. To date,
commercial usage of enzymes in vitro is primarily for sin-
gle reactions (or very short pathways). Usage of these
enzymes is often in a specialized context where enzymes
have distinct advantages over chemical methods, includ-
ing reduced reaction time, increased product yield,
increased product specificity, reduced cost, and reduced
environmental impact. Examples include isomerases in
starch processing, proteases/lipases in clothing deter-
gents, cellulases/amylases for bioethanol pretreatment,
and many others [32].

Only within the last ~2 decades have long enzymatic
pathways been activated in vitro with the specific intent
to both maximize product yield from low-cost substrates
as well as characterize the reaction elements. In this
“engineering” context, two approaches to CFME have
emerged: purified enzymes and crude extracts.

Purified systems use enzymes that have been overex-
pressed and purified individually, then recombined to

assemble a pathway of interest (Fig. 1). These systems
allow exquisite control of reaction conditions and path-
way fluxes since the concentration and activity of every
component is known. However, cofactor cost and regen-
eration is a challenge. The majority of CFME research to
date has utilized purified systems.

Crude extracts, on the other hand, are prepared by
simply lysing the cell, using centrifugation to remove cel-
lular debris, and collecting the supernatant as “lysate” or
“extract” (Fig. 1). Lysates are cheap to generate and con-
tain thousands of catalytic proteins naturally present in
cell metabolism. The activation of these native pathways
in the extract can regenerate cofactors or energy to pro-
vide the support system necessary to fuel highly active
metabolic conversions. For example, Jewett et al. demon-
strated that formation of inverted lipid vesicles during
extract preparation facilitates oxidative phosphorylation
which converts reducing equivalents from central metab-
olism into ATP [33]. While this native metabolism can be
looked upon as an advantage, this “background” metabo-
lism, if unwanted, can be difficult to characterize, elimi-
nate, or accurately model. The most prominent examples
of crude extract systems involve cell-free protein synthe-
sis (CFPS). Yields of lysate-based systems (now >1 g L–1

for bacterial systems) [33–38] have exceeded purified
ones (e.g. the PURE system) [39] and commercial applica-
tions have been established [40, 41]. CFPS will not be dis-
cussed further in this paper, but several other outstanding
reviews are available [42–44].

In comparing emerging biotechnology platforms to
established ones, purified and crude extract-based CFME
systems have individual merits, however trade-offs
between yield, cost, and other requirements must be
carefully considered. That said, CFME systems provide a
complement to in vivo technologies; yet offer several dis-
tinct advantages for the design, modification, and control
of biological systems (Table 1). From a biomanufacturing
perspective, cell-free systems separate catalyst synthesis
(cell growth) from catalyst utilization (metabolite produc-
tion). This contrasts the prevailing paradigm of enclosed,
cell-based, microbial “reactors.” By eliminating the
requirement of cell growth and diverting all carbon flux to
product, CFME allows for higher theoretical yields and
productivities, a wider range of products, and easier
manipulation of reaction conditions. For example, cell-
free production of 1,3-propanediol from glycerol
(0.95 mol/mol) highlights CFME’s ability to avoid byprod-
uct losses associated with traditional fermentation
(0.6 mol/mol) [45]. Further, cell-free systems avoid many
toxicity constraints arising from substrates, pathway
intermediates, or products. It has been noted that biolog-
ical processes (unlike most chemical reactions) experi-
ence heterogeneous (and often deleterious) conditions at
larger scales [19]; cell-free systems may experience more
chemistry-like scale-up. In one example, cell-free protein
synthesis has achieved a yield and rate expansion factor
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of 106 with nearly identical performance fidelity at 100 L
[40]. Finally, CFME systems may enable a new opportuni-
ties in logistics and on-demand, point-of-use manufactur-
ing.

From a prototyping perspective, cell-free systems are
well suited to rapid design-build-test cycles because they
do not require the re-engineering of the entire organism
with each design; merely the exogenous addition of the
desired protein, cofactor, or metabolite. Consequently,
there is a high degree of flexibility to model the kinetics of
individual enzymes, measure metabolite fluxes in multi-
step pathways, determine stability of catalysts, study the
effects of redox potential on pathway performance, and
experimentally isolate many other process properties that
are confounded in living organisms [17]. One of the largest
application of cell-free biology to date has been in the con-
text of pathway debugging [46].

Although cell-free technology offers many exciting
advantages, challenges remain that provide opportunity
for improvement. For example, most cell-free systems are
not yet commercially available as production platforms. In
addition, costs of in vitro systems currently exceed those
of in vivo approaches, which limit scale-up. Despite these
challenges and others (more thoroughly described in Sec-
tion 4), the benefits of CFME are inspiring new applica-
tions. In the next section, we examine achievements in
the capacity to synthesize metabolites using CFME.

3  Achievements in cell-free metabolic
engineering (CFME)

One of the early examples of purified enzyme pathway
reconstruction was by Welch and Scopes in 1985 [47].
Yeast glycolytic enzymes were isolated and ethanol pro-
duced at rate of 0.042 mmol L–1 h–1; it was also shown that
overloading of substrate (glucose) sequestered inorganic
phosphate in the early reaction steps preventing subse-
quent ATP generation and effectively stopping ethanol
synthesis. These seminal results led others to extrapolate
that cell-free ethanol production is theoretically capable of
higher productivities and yields than living cells [48].
While this has yet to be realized industrially, a range of
other CFME pathways have since been explored. These
efforts have illuminated general rules for achieving high
metabolic yields and productivities in vitro. To briefly
summarize, requirements for optimal metabolic conver-
sion include: robust and stable enzymes, appropriate
enzyme ratios and substrate/cofactor/buffer concentra-
tions, and a means for providing a favorable thermody-
namic push towards a product (i.e. cofactor regeneration,
product removal, repeated substrate feeding). These
requirements are characteristic properties of the in vivo
state of a rapidly growing cell. Thus, a guiding principle
that has emerged in the development of CFME systems is
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Table 1. Advantages (+) and disadvantages (−) of cell-free systems

Metric Living cells Cell-free systems

Pathway − Engineer’s goal (overproduction) is typically opposed + Easy to use chimeric enzyme pathways sourced 
engineering to microbe’s goal (growth) from multiple organisms

− Endogenous regulation is difficult to predict + Allow mixing with chemical catalysts/hybrid solvents 
and modify that would otherwise be cytotoxic

+ Ability to use directed evolution

Yield − Carbon flux diverted to cell maintenance + All carbon/energy can be directed to product
and byproducts

Cell wall − Selective barrier; intercellular characterization, + Direct substrate addition and product removal; 
and product excretion can be challenging easy sampling

+ Membrane proteins can be used

Effect of yield − Viability constraints + No viability constraints (e.g. 12% v/v isobutanol 
toxicity (e.g. 1–2% v/v isobutanol [124]) for some pathway enzymes [49])

Stability − Fermentation conditions affect intercellular + Reaction conditions controlled by engineer
environment

Cost + Low; pending high yields, and low product − Must incorporate cost of “catalyst” synthesis
separation cost (e.g. cell growth and/or enzyme purification)

− Enzyme and cofactor costs dominate

Scale-up − Fermentation conditions are heterogeneous + Linear scale-up?
at industrial scale

− Contamination can be catastrophic

Maturity + Years of practical experience; well established methods − Recently established
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that cytoplasmic mimicry enables highly productive sys-
tems [17, 23, 33, 35, 42].

3.1  Purified enzyme systems

3.1.1  Ethanol and isobutanol
A landmark paper for purified CFME describes the con-
version of glucose to ethanol (and isobutanol) using 6 
(or 9) purified enzymes in a “minimized reaction cascade”
[49] (Fig. 2A). Novel use of promiscuous enzymes from
hyperthermophilic archaea shortened the ubiquitous 
10-enzyme Embden–Meyerhof–Parnas (EMP) pathway 
to four enzymes using a modified non-phosphorylative
Entner–Doudoroff pathway. Glucose was converted to
pyruvate while generating two NADH; ATP and addition-
al reducing equivalents generated by the EMP pathway
are not needed in this specific pathway. The catalytic
activity and tolerance to product concentration of each
purified enzyme was assayed, a task not easily accom-
plished in vivo. The 20 mL complete reaction contained all
6 (or 9) enzymes normalized to an equivalent activity
(10 μmol min–1); if all enzymes were active at this rate, the
reaction would be theoretically capable of producing
~30  mmol  L–1 h–1 ethanol. The reaction produced an
impressive 57% molar yield of ethanol from glucose at
1.51  mmol  L–1 h–1 productivity. This is one of the best-
reported examples to date of using CFME as a stand-alone
bioproduction strategy. Higher enzyme concentrations
and pathways with multiple cofactors (beyond NAD+

alone) are future directions, but this study demonstrates
the ease of characterization and the “plug-and-play”
nature of CFME optimization.

3.1.2  Pathway prototyping and non-oxidative glycolysis
Despite significant advances in traditional metabolic
engineering, most successes to date have been through
combinatorial screening as opposed to rational design.
Indeed, the semi-synthetic production of the anti-malaria

drug artemisinin has been one of the great success stories
of the metabolic engineering and synthetic biology com-
munities, yet the high cost and  substantial work (>150
person years) was mostly needed for “pathway balancing”
[16]. Cell-free platforms offer a “breadboarding” capability
that can be easily monitor and control complex pathways;
this can augment the lack of information regarding in vivo
steady-state kinetics and metabolic flux imbalances. For
instance, mRNA-enzyme fusions bound to DNA were
used to explore enzyme ratios in the glucose to trehalose
pathway [50]. This concept is extremely valuable for
rational metabolic engineering, but is also useful in build-
ing engineerable genetic circuits for other synthetic biol-
ogy applications [46, 51].

Cell-free methods were also recently used in develop-
ment of a novel non-oxidative glycolysis pathway [52].
The goal of this effort was to develop an alternative to the
classic EMP pathway and produce a maximal carbon
yield from glucose (i.e. three acetyl-CoA instead of two).
This higher carbon efficiency comes at the expense of
reducing equivalents (i.e. no NADH is produced) and
would be extremely useful in applications that have an
external electron source or no need for reducing power.
The Liao group was able to achieve ~100% in vitro con-
version of glucose to acetyl phosphate at relatively high
titer (30 mM) using seven His-tag purified enzymes plus
seven purchased enzymes. This result allowed them to
validate their proposed pathway and the efficacy a het-
erologous phosphoketolase enzyme prior to subsequent
expression in vivo. The elimination of CO2 as a byproduct
of central metabolism is a potentially game-changing
result for the metabolic engineering community at large;
both inside and outside the cell.

3.1.3  Isoprenoids
In light of intrinsic commercial value and the in vivo
efforts regarding artemisinin highlighted above, several
groups have reconstituted isoprenoid pathways in vitro to
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Figure 2. Selected metabolic pathways (A) glucose to ethanol/isobutanol [49], (B) sugar to hydrogen [61], and (C) glucose to DHAP or TDHP [71].
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inform further engineering. Farnesene was produced from
acetyl-CoA using nine purified enzymes plus two NADPH
reducing equivalents and three ATP [53]. Optimization of
in vitro enzyme concentrations informed in vivo addition
of a second copy of the idi gene that encodes isopentenyl
diphosphate isomerase; this resulted in a doubling of in
vivo titers. A similar experimental design had been used
earlier to improve production of fatty acid-derived com-
pounds [54]. Chen et al. exploited several unique capabil-
ities of CFME to reconstitute a seven-enzyme pathway
from mevalonate to amorpha-4,11-diene, an artemisinin
precursor [55]. In this work, design of experiments via
Taguchi orthogonal arrays were used to quickly explore a
broad sample space of relative enzyme concentrations
and revealed that the fifth enzyme (IspA, which encodes
for farnesyl pyrophosphate synthase) had an inhibitory
effect and a lowered concentration improved yields. How-
ever, the yield reduction was due to precipitation the IspA
product farnesyl pyrophosphate (FPP); subsequent exper-
iments also showed the importance of pH and Mg2+ in
final titer. These results exemplify the flexibility of CFME
to advantageously modify and tune the reaction condi-
tions while also demonstrating CFME’s limitations as an
in vivo prototyping model since pH and ion concentration
are not easily controlled within the cell.

In another example of isoprenoid synthesis, isoprene
was made from glycolytic intermediates phosphenolpyru-
vate (PEP) and pyruvate via a twelve-enzyme pathway 
at ~100% molar yield [56]. The PEP substrate provided
adequate ATP for isoprenoid synthesis; NADPH was
 recycled from glucose-6-phosphate using glucose-6-
phosphate dehydrogenase (G6PDH). A productivity of
~0.2 mmol L–1 h–1 demonstrates the successful activation
of the three-subunit pyruvate dehydrogenase complex
and points to the feasibility of a complete pathway from
glucose if the glycolytic pathway can be constructed so as
to regenerate NADP+ (whereas NAD+ is the more com-
mon glycolytic cofactor).

3.1.4  Specialty chemicals
CFME has biochemically innovative abilities for isotopic
and chiral precision. The specificity of enzymatic cataly-
sis has been leveraged to make radiolabeled nucleotides
de novo in which specific atoms can be radiolabeled
depending on the substrate isotope. In an exemplary tour
de force example, a 28-enzyme pathway was implement-
ed for the purines GTP and ATP [57], while 18 enzymes are
required for the pyrimidines UTP and CTP [58]. Purified
enzyme systems have also been used to make chiral mol-
ecules difficult to synthesize due a variety of possible
enantiomers. Examples include D-fagomine [59] and eth-
yl (S)-2-ethoxy-3-(p-methoxyphenyl)propanoate (EEHP), 
a precursor to family of type 2 diabetes drugs, which
required discovery/purification of necessary catalytic
enzymes resulting in a 100-fold higher productivity com-
pared to whole yeast cells [60].

3.1.5  Hydrogen and fuel cells from sugar
The Zhang group has made significant progress in sugar
to hydrogen conversion. H2 has the potential to be a use-
ful secondary energy carrier in a proposed hydrogen econ-
omy; however, it has a relatively low storage density as a
gas. An alternative proposal would use the high storage
density of sugar to power an efficient, enzymatic sugar-
to-hydrogen process with subsequent fuel cell conversion
to electricity. The hypothetical energy conversion effi-
ciency of a robust, mobile, enzyme-based sugar-to-hydro-
gen-to-electricity system would be very high relative to
conventional (combustion) and proposed (electric battery
or fuel cell) energy systems [24]. Impressive molar conver-
sion of hydrogen has been observed from starch [61], cel-
lobiose [62], xylose [63], sucrose [64], and glucose/G6P [65]
(Table 2). Notably, the ~12 mol H2 mol–1 glucose-equiva-
lent yield is triple the in vivo Thauer limit [66] of 4 mol H2
mol–1 glucose-equivalent. The typical continuous flow
reaction pioneered by the Zhang group uses thirteen
purified enzymes with H2 and CO2 monitored in the gas
stream (Fig. 2B). Two dehydrogenases are used to reduce
NADP+ via two-step oxidation of G6P to Ru5P; the major-
ity of remaining enzymes are used to rearrange the five
carbon sugars to six carbons in order to repeat the cycle.
Meanwhile, H2ase generates H2 from the NADPH. This
work demonstrates the utility of a complex pathway, 
the flexibility to use cheap, five-carbon substrates 
(i.e. xylose), and the increased efficacy of thermostable
enzymes [63, 65]. It should be noted, however, that the
xylose system requires phosphorylation of xylulose to
xylulose-5-phophate which requires ATP or less costly
polyphosphate [63]. In general, comparably high molar
productivities point to advantages of a gas-phase target
molecule whose separation presumably drives thermody-
namic equilibrium towards H2. Further flexibility was
demonstrated when the H2ase was replaced by xylose
reductase to make xylitol from xylose while consuming
cellobiose for energy [67]. While achieving (near-) theoret-
ical yields, a challenge for CFME highlighted in these
works is the need for costly cofactors (see Section 4.3). For
example, to produce ~60 mmol H2 over 120 h, 2 mmol of
NADP+ is needed (a turnover of ~30) [62].

Further work by Zhang’s team to utilize recalcitrant
feedstocks resulted in a simultaneous enzymatic bio-
transformation and fermentation system [68]. Here, a short
four-enzyme pathway converted cellulose to starch and
glucose where the free glucose was metabolized by living
yeast to ethanol. This system promises to makes a non-
food biomass much more readily available for useful pur-
poses.

In order to further develop the envisioned pathway of
sugar to electricity, the pathway in Fig. 2B was repur-
posed for direct electricity generation using a NADPH-
dependent diaphorase enzyme capable of reducing vita-
min K3 (menadione) which was immobilized to a fuel-cell
anode coated with carbon nanotubes [69]. This allowed
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direct electricity production from maltodextrin in a batch
experiment. The energy storage density of this system is
an order of magnitude higher than traditional batteries,
though at a lower voltage and current density. While a
complete review of enzymatic fuel cell literature is avail-
able elsewhere [25, 70], this work demonstrates a promis-
ing application and direction for future CFME pathways.

In summary, purified systems to date exhibit high
 percent molar conversion but relatively low molar
(mmol L–1 h–1) and mass (g L–1 h–1) productivities (Table 2).
Cofactor turnover could be improved; it currently ranges
from ~1 to 30 for both NAD(P)+ and ATP (Table 2). Finally,
though cheaper techniques are in development, cost of
cofactors and enzymes remain a barrier to commercial-
ization. Crude extract-based CFME has fewer published
examples, but offers an alternative approach that could
help address some of these issues at the expense of added
complexity.

3.2  Crude cell lysate systems

While a majority of CFME approaches use purified
enzymes, lysates of cells have been used in other applica-
tions (e.g. protein synthesis) to great effect [42]. One sem-
inal paper for crude extract-based CFME involves the
 synthesis of dihydroxyacetone phosphate (DHAP) from
glucose (Fig. 2C) [71]. Here, engineered E. coli cells were
pelleted and lysed by a high-pressure homogenizer; sub-
sequently, cell debris, along with insoluble components,
was removed via centrifugation. The resulting cell lysate
was buffered and fed glucose, ATP, and NAD+ in a 10 mL
batch reaction. The deletion of triosephosphate iso-
merase (tpiA) in the source strain caused DHAP to accu-
mulate in the reaction while the absence of AMP-nucle-
osidase (amn) prevented degradation of the catalytic
ADP/ATP. Butanal was added to the reaction to generate
5,6,7-trideoxy-D-threo-heptulose-1-phosphate (TDHP) via
an endogenous aldolase (FbaA). The subsequent high
yield of DHAP and TDHP demonstrates the viability of the
crude extract approach and the ability for strain modifi-
cations (tpiA and amn deletion) and fermentation condi-
tions to affect CFME reactions. Additionally, selective
addition of NAD+ (and not NADP+) funneled glycolysis to
DHAP as the residual concentration of NADP+ in the
extract was apparently too low to allow activation of the
competing pentose phosphate pathway. In order to fur-
ther optimize reaction conditions, Bujara et al. built a con-
tinuously stirred reaction where enzymes are sequestered
behind a membrane and fifteen pathway intermediates in
the effluent are quantified in real time using ESI-MS [72].
Analysis of intermediate flux after combinatorial addition
of commercial enzymes informed construction of an oper-
on to express needed enzymes during the fermentation;
this improved DHAP yield approximately three-fold.
While the pathway to DHAP is inherently limited by loss
of metabolite flux to lactate in order to regenerate NAD+,

the real time analysis and optimization shows the poten-
tial for precise control of metabolite flux despite the pres-
ence of unused enzymes in the lysate. Further, this shows
a powerful approach that can be used to build detailed
kinetic models for the metabolic pathways as defined by
values of KM, kcat, and Ki for each enzyme; these models
have utility both in vivo and in vitro.

Recently, a yeast cell-free lysate system to produce
ethanol from glucose was demonstrated to be highly pro-
ductive (10 mmol L–1 h–1) and required no pathway tuning
or strain modification [73]. Yeast cells growing in waste of
beer fermentation broth were isolated, grown, lysed via
bead beating, buffered, and mixed with glucose to gener-
ate 4 g L–1 (87 mM) ethanol. Notably, concentrations of
ATP (1.8 mM) and NAD+ (0.11 mM) in the extract were
high enough to sustain the reaction without supplemen-
tation. In other words, enzyme turnover was >1500 for
NAD+ and >20 for ATP, thus highlighting a potential
advantage of crude-extract CFME as compared to puri-
fied enzyme systems.

Crude extract pathways  are not limited to endogenous
target molecules. Keller et al. generated 3-hydroxypropi-
onate from acetyl-CoA and CO2 using H2 for reducing pow-
er (this is a component of a proposed, 13-enzyme pathway
to fix CO2 to acetyl-CoA via hydrogen reducing equivalents)
[74]. Expression of the novel pathway was done in P. furi-
anosis, which has optimal activity at 100°C; when the cell-
free reaction was run at 70°C, only the recombinantly
expressed enzymes were active at the lower temperature.
Crude extracts have demonstrated the ability to synthesize
high-value biologics and therapeutics; examples include
single-step conversion of diketides to chiral triketide lac-
tones (polyketide building blocks) [75], lysine to ε-poly-L-
lysine (an anti microbial) [76], and 7α-demethoxy cefminox
to cefminox (an antibiotic) [77]. In another study, 14C-labeled
substrates were used to elucidate possible biosynthetic
pathways for manufacture of the antitumor agent Azino-
mycin B [78]. These high-value products are promising
directions for economically feasible CFME; particularly
since crude extracts do not require costly purification steps.

In summary, extract-based cell-free systems have so
far seen relatively few examples for biomanufacturing and
pathway prototyping. Thus, it is still early to comment on
their utility in this arena, as compared to purified systems.
However, the underlying metabolism is able to support
high-level cofactor and energy regeneration. Moreover,
the approach can enable rapid combinatorial iterations of
enzymes during optimization of biosynthetic pathways.
Thus, we expect to see substantial growth in the upcom-
ing years.

4  Challenges and opportunities in CFME

CFME is already showing tremendous value for pathway
construction and prototyping. While many proof-of-
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 concept pathways have been developed at the lab scale,
it remains unclear to what extent CFME systems might
also serve as commercially relevant production factories.
Many barriers remain to commercializing cell-free syn-
thetic systems. These include high costs of protein purifi-
cation, stability and longevity of reactions, cofactor
regeneration, limited efforts in modeling, and ability to
scale. Following is discussion of current efforts to address
these challenges.

4.1  Purification

Large-scale purified enzyme systems are limited by sev-
eral major obstacles including enzyme cost and stability.
Strategies to increase total turnover of enzymes would
alleviate some of these issues [24, 67]; in addition, cost-
effective strategies to purify multiple enzymes are desir-
able. Heat purification and immobilization, as well as the
use of cheap scaffolds, are some of the most active areas
of research being employed to address this challenge.

The Ohtake lab has done significant work in the
CFME space by expressing thermophilic enzymes in 
E. coli, lysing the cell, and heating the extract to inacti-
vate all proteins except those needed for the pathway of
interest [79]. This effectively “purifies” the relevant
enzymes in a single step. This method was used to build
a 10-enzyme “chimeric glycolysis” pathway to make lac-
tate [80]. The GAPDH/PGK enzymes of traditional EMP
glycolysis are replaced by GAPN; thus, no net ATP is gen-
erated by the pathway. In a fed-batch system with a slow
feed rate, lactate was produced from glucose at a rate of
~1.25 mmol L–1 h–1 and nearly ~100% molar conversion. In
a similar fashion, a sixteen-enzyme pathway to produce
n-butanol from glucose was constructed [81]; this specif-
ic project used a pyruvate decarboxylase and CoA-acylat-
ing dehydrogenase to bypass the large and difficult-to-
express pyruvate dehydrogenase complex [82]. Directed
enzyme evolution of malic enzymes was needed to opti-
mize a glucose to malate system [27, 83]. Stability of
cofactors is a tradeoff when using thermophilic enzymes
in CFME; the reaction temperature of 50°C is a compro-
mise between the high temperature needed for maximum
enzyme activity and lower temperature needed for NAD+

and ATP stability.
“Heat” purification was also utilized during efforts to

engineer a thermotolerant aldehyde dehydrogenase for
glucose-to-ethanol CFME [49]. Here, reaction velocity and
NAD+ affinity were improved via protein refolding [84]
and evolution by random mutagenesis [85]. Shorter path-
ways have also leveraged “heat” purification in conjunc-
tion with ammonium sulfate precipitation, a technique
where the salt concentration is increased until proteins
begin sequentially precipitating [86].

In an effort to improve stability of the thermophilic
enzymes themselves, glutaraldehyde was used to cross -
link proteins so that the E. coli chassis cell remained

intact after heat treatment [87]. The membrane in this
state is permeable to small molecules and the “whole
cells” could repeatedly convert fumarate to malate. This
“permeabilized cell” concept, like crude extracts, can
eliminate the need for enzyme purification [88]. A number
of permeabilizing agents using a variety of mechanisms
are available [88]; for example, Krauser et al. used Triton
X-100 in efforts to produce flavolin [89]. However, more
research is needed to characterize enzyme stability and
kinetics under permeabilized conditions.

In another purification strategy inspired by the cellu-
losome, dockerin-tagged enzymes are bound to cohesin
attachments sites linked together as a scaffoldin subunit.
The scaffoldin complex can then be attached to a mag-
netic nanoparticle [90] or a cellulose-binding domain
(which can adsorb to a low-cost regenerated amorphous
cellulose) [91]. As an added benefit, the spatial proximity
and/or added enzyme stability of these enzymes in the
CFME reaction improved activity of a three-enzyme path-
way by ~5-fold and ~40-fold, respectively. Thus, the
purification technique lowers costs and can lead to high-
er yields and productivities, particularly if chemical reac-
tions are diffusion limited.

4.2  Spatial organization and enzyme stability

The reaction environment for CFME is inherently differ-
ent than in vivo. Cells have organelles for spatial organi-
zation which can sequester pathways with overlapping
intermediates, isolate pathways with toxic intermediates,
and accelerate flux through slow or bottleneck enzymes
by creating high local concentrations. Additionally,
enzyme concentrations in CFME are typically 1–10  mg
total protein mL–1 in crude extracts [35, 71] and lower still
for purified systems, whereas total cytoplasmic protein
concentration is ~200 mg mL–1. Enzymes were evolved for
maximal activity in the crowded macromolecular envi-
ronment in vivo. Thus, compartmentalization, scaffolding,
and immobilization are but a few of the strategies being
used to circumvent these challenges [92, 93].

For compartmentalization, CFME could utilize lipo-
somes (lipids), polymersomes (amphiphilic block copoly-
mers), layer-by-layer capsules (charged polyions), micro -
fluidic encapsulation, and other approaches [94]. For
example, polymersome nanoreactors can be engineered
for selective porosity (dependent on pH and sugar con-
centration) as well as positional control of a three-enzyme
cascade [94]. Also, in vivo scaffolding strategies [95] using
proteins [96] or DNA [97] could be easily adapted to cell-
free applications. The success of the scaffoldin-dockerin
work by Zhang described in Sections 3.1.5 and 4.1 [90, 91]
indicates the reaction is diffusion-limited or that scaffold-
ing improves enzyme stability and activity.

Enzyme stability and longevity are challenges for
CFME. With continuous removal of inhibitory byproducts
and feeding of substrates, crude extract cell-free protein
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synthesis has been shown to last up to ~100 h [98], yet
most cell-free batch systems show decreased productivi-
ty over time (Table 2), possibly due to enzyme inactiva-
tion. Enzyme immobilization is a common industrial prac-
tice to increase the longevity of enzymes, often the
expense of activity, yet many immobilization strategies
for CFME have been proposed including particle entrap-
ment, crosslinking to microchannel surfaces, and immo-
bilization to membranes or nanoparticles [26]. Recent
work to improve activity of alcohol dehydrogenase on a
variety of solid supports points to a hypothetical reaction
scheme in which all pathway enzymes are immobilized
[99]. For small quantities of high-value products, chip-
based immobilization strategies (such as fusion pro-tags)
could be useful [100]. In general, the increased local con-
centration of substrates and catalysts via scaffolding/
immobilization has the potential to increase both the
longevity and productivity of cell-free systems.

4.3  Cofactor engineering

While crude extract-based CFME efforts have shown the
potential for activating and controlling long-lived, cost-
effective cofactor regeneration in lysate systems [33, 73]
(Table 2), cofactor costs and instability remains a signifi-
cant challenge for CFME and presently limits its com-
mercial viability for low-value commodity chemicals [24].
Cofactor engineering could catalyze more cost-effective
CFME efforts, especially for purified systems that must
supplement the reaction with the necessary cofactor(s).
The nicotinamide nucleotides NAD+ and NADP+ are
ubiquitous electron carriers that are utilized by most
redox enzymes. These molecules differ only in an addi-
tional phosphate group esterified at the 2′-hydroxyl group
of NAD+. To activate de novo or existing enzyme path-
ways, cofactor balance can be crucial, especially without
the regulation of a living cell. A number of protein engi-
neering studies have successfully changed cofactor speci-
ficity from NADP+ to NAD+ [101], NAD+ to NADP+ [102] or
made the enzyme active with either cofactor [103]. A
prominent CFME example leverages the cofactor speci-
ficity of an engineered pyruvate dehydrogenase complex
and oxidase to create a dynamic molecular purge valve
that oxidizes excess NADH (but not NADPH) to balance
cofactor levels in polyhydroxybutyrate (PHB) and isoprene
pathways [104]. As mentioned earlier, NAD+/NADP+ are
unstable in vitro and expensive; several groups have been
examining the feasibility of biomimetic cofactors such as
1-benzyl-3-carbamoyl-pyridinium [105]. Other excellent
reviews are available for discussion of cofactor-specificity
and enzyme engineering [25, 106].

In specific pathways or applications, the ease of
access to the reaction space could inspire integration of
electronics with CFME where reducing power could be
provided directly to enzymes by an external electric cur-
rent (i.e. electrosynthesis) [107, 108]. These enzymatic

bioelectrochemical systems (e-BES) could be extremely
useful in adapting CFME to pathways that are not redox
balanced [108].

4.4  Modeling

Prediction of intracellular concentrations and fluxes using
computational modeling has greatly improved the cofac-
tor management and product yields of conventional meta-
bolic engineering efforts. In silico analysis of cell-free
metabolism could thus shed light on pathway dynamics
and inform optimization strategies. Removal of transport
barriers and microbial growth objectives allows adapta-
tion of in vivo models to cell-free systems; alternatively,
new models can be made from scratch. For example, to
analyze the cellobiose-to-hydrogen system described pre-
viously [62], Ardao and Zeng used a kinetic model incor-
porating nineteen mass balance equations to predict that
modularizing the one-pot system into two reactors could
improve productivity two- to eight-fold [109]. As another
illustrative example, a genetic algorithm for one-pot
 multi-objective optimization of the thirteen enzyme
 loadings plus initial concentrations of cellobiose, phos-
phate, and NADP+ showed the importance of hydroge-
nase loading and predicted a possible productivity up to
355 mmol L–1 h–1 [109]. This paper also identified which
enzymes would benefit most from engineering to improve
activity or solubility. Metabolic flux analysis (MFA) and
associated tools could also be adapted to CFME efforts by
removing transport operations and boundaries and recon-
ceptualizing objective functions [110–112]. For example, 
a well-studied flux balance analysis tool (COBRA) was
modified to analyze crude extract production of DHAP
[112]. This model was able to correctly predict a previ-
ously identified undesired pathway for DHAP synthesis
from adenosine phosphate, as well as identify other
potentially interfering pathways that could be feasibly
modified to further insulate the desired metabolic path-
way.

The development of computational design tools such
as BNICE [113, 114], PathPred [115], UM-PPS [116],
Retropath [117], Metabolic Tinker [118], and others [111]
has led to an explosion of proposed novel metabolic path-
ways and circuits. CFME will be crucial tool in the exper-
imental validation of these pathways. CFME’s ability to
adjust cofactor/enzyme concentrations and easily sample
reaction intermediates/products are significant advan-
tages when troubleshooting and optimizing these path-
ways.

4.5  Scalability

It is well known in microbial fermentation processes that
reaction scale affects molecular diffusion, gas transfer,
hydrostatic pressure, mixing rates, temperature gradi-
ents, and other parameters [19]. To date, cell-free systems
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have relatively few examples of industrial scale produc-
tion. However, published results from crude-extract cell-
free protein synthesis recently demonstrated linear scala-
bility for protein yields from the microliter to liter scale for
aglycosylated antibodies (5  L scale) [41] and cytokines
(100 L scale) [40]. Highlighting an expansion factor of 106,
these findings suggest cell-free engineering considera-
tions are more parallel to chemistry than a living system
and give promise to the technical scalability of CFME
pending economic viability.

5  Outlook

CFME holds tremendous potential for rapidly developing
metabolic systems capable of synthesizing useful small
molecules. While the number of successfully demonstrat-
ed pathways continues to grow, purification and cofactor
costs are challenges that have yet to be resolved. By
addressing these challenges, as well as others described
in Section 4, we anticipate that cell-free systems will
enable new opportunities. One such emerging opportuni-
ty is the ability to explore combinatorial assembly of
 pathways by mixing-and-matching lysates or individual
enzymes (Fig. 3, shown for lysates). For example, when
optimizing a selected pathway, multiple cell extracts
could be prepared, each with a different enzyme(s) over-
expressed. The extracts provide supporting metabolic
enzymes for highly active energy production and co-fac-
tor regeneration (e.g. to convert glucose to acetyl-CoA).
Subsequently, extracts selectively enriched with these
different enzyme(s) could be mixed in different combina-
tions/ratios to build partial or full-length pathways that
provide initial estimates of beneficial enzyme ratios, as
well as indications of enzyme promiscuity to different
starting substrates and the presence of unwanted side
reactions. Notably, such an approach does not require the
focus on flux balancing and delicate promoter tuning to
maintain viability as for in vivo systems [119–121]. More-
over, strain modification techniques, such as MAGE
[122], could be leveraged to add protease cleavage sites
[23] or affinity tags [123] to essential enzymes; this would
allow selective degradation or physical removal of
unwanted pathways critical for growth. An additional
possibility is mixing lysates from multiple organisms, i.e.
organismal amalgams, to construct novel natural product
pathways that would be impossible to express in one
organism in vivo (Fig. 3).

Looking forward, we expect that CFME will enable
new frontiers for rapidly generating and evaluating new
enzymes and metabolic pathways. It is unclear to what
extent CFME will be used for prototyping systems for in
vivo application (e.g. pathway balance or enzyme promis-
cuity) or as a large-scale biomanufacturing system in its
own right. Small-scale, high-value synthesis in chip-like
applications may also prove to be useful. Obviously, these

questions will only be answered as viable commercial
ventures emerge. That said, by avoiding toxicity con-
straints, CFME will offer novel ways to create hybrid mol-
ecule products composed of elements derived from both
chemical and biological synthesis strategies. In sum,
CFME holds the potential to expand the definition of bio-
manufacturing, allowing cell-free biosynthesis to pene-
trate into new industrial applications and provide imme-
diate and significant solutions to global challenges in
materials, medicine, and sustainability.
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