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Abstract 

Enzyme engineering is limited by the challenge of rapidly generating and using large 

datasets of sequence-function relationships for predictive design. To address this 

challenge, we developed a machine learning (ML)-guided platform that integrates cell-

free DNA assembly, cell-free gene expression, and functional assays to rapidly map 5 

fitness landscapes across protein sequence space and optimize enzymes for multiple, 

distinct chemical reactions. We applied this platform to engineer amide synthetases by 

evaluating substrate preference for 1,217 enzyme variants in 10,953 unique reactions. 

We used these data to build augmented ridge regression ML models for predicting amide 

synthetase variants capable of making 9 small molecule pharmaceuticals. Our ML-10 

guided, cell-free framework promises to accelerate enzyme engineering by enabling 

iterative exploration of protein sequence space to build specialized biocatalysts in parallel. 
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Main 
 
Engineered enzymes are poised to have transformative impacts across applications in energy1, 

materials2, and medicine3. To create such enzymes, a protein’s amino acid sequence is changed 

to enhance native function or facilitate new chemical reactions. This process typically involves 5 

identifying enzymes with natural plasticity and promiscuity for the reaction of interest, followed by 

using directed evolution4,5. Unfortunately, current approaches to directed evolution are limited 

because they can only map sequence-function relationships in a narrow region of sequence 

space. For example, screening strategies are generally low throughput, which constrains re-

sampling mutations in iterative site saturation mutagenesis campaigns and can miss epistatic 10 

interactions that capture beneficial pairwise (or greater) synergies when the single mutations are 

neutral or even detrimental6. Additionally, selection methods for directed evolution focus on 

“winning” enzymes for a single transformation, which limits the ability to collect positive and 

negative sequence-function relationships for forward engineering of similar reactions7.  

 15 

Computational technologies have emerged to accelerate existing directed evolution approaches. 

De novo protein design can create new-to-nature enzymes, but the diversity of chemistries and 

applications remain limited8–10. Machine learning (ML) models have been used to discover 

enzymes by inferring fitness based on related homologs and/or protein sequences from all 

organisms (a so-called zero-shot prediction) as well as to navigate protein-fitness landscapes 20 

based on assayed fitness data (e.g., nonlinear regression using site-specific one-hot 

encodings)11–13. While ML-assisted enzyme engineering methods show promise, rapidly building 

datasets to navigate vast sequence space remains a challenge14, especially considering most 

genotype-phenotype links are lost in high-throughput enzyme engineering campaigns15.  

 25 

Here, we developed a high-throughput, ML-guided approach to enable exploration of fitness 

landscapes across multiple regions of chemical space for forward design of biocatalysts (Fig. 1). 

A key feature of our approach is the use of cell-free gene expression (CFE) systems to allow for 

the rapid synthesis and functional testing of proteins16–21 in a design-build-test-learn (DBTL) 

workflow. This framework first maps sequence-function relationships for enzyme variants with 30 

single-order mutations for a specific chemical transformation identified from an evaluation of 

enzymatic substrate promiscuity. Then, these data are used to fit supervised ridge regression ML 

models augmented with an evolutionary zero-shot fitness predictor and extrapolate higher-order 

mutants with increased activity. Importantly, our ML models can be run on the central processing 

unit (CPU) of a typical computer making our entire approach user-friendly and accessible. 35 

 

We applied our framework to carry out divergent evolution, converting an amide bond-forming 

generalist enzyme into multiple, distinct specialist enzymes. The biocatalytic formation of amide 

bonds—a motif ubiquitously found in pharmaceuticals, agrochemicals, polymers, fragrances, 

flavors, and other high-value products22—could offer unique advantages over synthetic 40 

counterparts23–25 (e.g., mild reaction conditions and chemo-, stereo-, and regioselectivities) and 

facilitate sustainable biomanufacturing26–29. McbA from Marinactinospora thermotolerans30 is one 

representative ATP-dependent amide bond synthetase involved in the biosynthesis of 

marinacarboline secondary metabolites31. McbA, and its close homolog ShABS32, have been 

shown to have a relaxed substrate scope, accepting several simple acids and amines commonly 45 
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found in pharmaceuticals30,33. This backdrop suggests that McbA serves as a flexible starting point 

for engineering a generalist enzyme into multiple reaction specialists each capable of carrying out 

a different chemical reaction. 

 

 5 

Fig. 1: An ML-guided, cell-free enzyme engineering platform. Schematic shows how a design-build-
test-learn workflow is applied to rapidly map sequence-function landscapes. Putative residues directing 
enzyme catalysis are rationally selected based on structural insights, evolutionary trends, and 
computational tools (e.g., ROSETTA34, EVmutation35, PROSS36) (design). Site saturation mutagenesis and 
cell-free gene expression are carried out in less than 24 hours to generate sequence-defined libraries 10 

(build). The libraries can then be screened for desirable protein fitness metrics (test). Information from the 
test phase, including failures, is used to identify functionally important amino acid residues that feedback 
on iterative designs, as well as fit ML models (learn).  

 

Results  15 

 

Exploring the biocatalytic synthesis landscape of McbA 
 

The goal of this work was to develop an ML-guided, DBTL workflow that expedites simultaneous 

directed evolution campaigns for biocatalysis by reducing screening burden. This goal required 20 

generating sequence-fitness data for unique chemical transformations, from which to create 

predictive ML models. To identify reactions of interest, we first explored the possible amidation 

reaction space of wild-type McbA (wt-McbA) by evaluating enzymatic substrate promiscuity (Fig. 

2A). We studied an extensive array of substrates that deviated from the heterocyclic acids and 

primary or aromatic amines preferred by wt-McbA. These substrates included primary, secondary, 25 

alkyl, aromatic, complex pharmacophore, electron poor or rich species, and substrates containing 

other heteroatoms, halogens, and “unprotected” nucleophiles or electrophiles. More challenging 

substrates (e.g., complex heterocyclic acids and amines, enantiomers, and substrates containing 

both acids and amines or multiple acids and amines) were also included to determine the innate 

limitations and preferences of wt-McbA. We carried out 1,100 unique reactions with low enzyme 30 

concentration (~1 µM) and high substrate concentrations (25 mM), covering 21 molecules of 

known value including pharmaceuticals, fragrances, and polymers (Fig. 2B).  
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Interestingly, wt-McbA displayed a tolerance to multiple “unprotected” functional groups and 

geometries. Generally, aliphatic acids were poorly tolerated while aryl, benzoic, and cinnamic 

acids were readily accepted substrates. Charged aryl acids were a unique exception and usually 

coupled to very few amines. Conversely, wt-McbA readily coupled primary and secondary 5 

aliphatic amines but struggled with aryl amines. We observed that McbA was able to synthesize 

11 pharmaceutical compounds as well as dozens of hybrid molecules (Fig. 2C), ranging from 

trace amounts detectable only by mass spectrometry (MS) to approximately 12% conversion. In 

these reactions, we uncovered both stereoselectivity (e.g., strongly favoring the synthesis of S-

sulpiride over R-sulpiride) and strict chemo- and regioselectivity preferences (e.g., substrates 10 

containing both acids and amines not polymerizing). Given that the reaction mechanism of McbA 

first begins with the adenylation of the carboxylic acid, we also noticed several instances where 

only the acyl-AMP intermediate was observed.  

 

 15 
Fig. 2: The diverse accessible chemical space of McbA suggests a biocatalyst capable of 
synthesizing several high value molecules. (A) Reaction scheme and screening conditions for exploring 
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the substrate scope of McbA for the enzymatic synthesis of amides. McbA was expressed using CFE and 
the reaction was initiated by the addition of different combinations of acid and amine substrates. (B) The 
all-by-all substrate screen for McbA, analyzed with RP-HPLC (n = 1). Darker red corresponds to a product 
that was observable by UV absorbance while lighter red corresponds to trace amounts only detectable by 
MSD. A complete list of substrates can be found in Fig. S1. (C) Among the 21 high value molecules that 5 

were possible in the substrate scope, we observed that McbA was able to synthesize 16 (11 of which are 
small-molecule pharmaceuticals). (D) Example high value molecules that McbA was unable to synthesize 
under the tested reaction conditions. 

 

Cell-free protein engineering to rapidly screen sequence-defined protein libraries 10 

 

With specific chemical transformations identified from our evaluation of enzymatic substrate 

promiscuity, we next wanted to quickly generate large amounts of sequence-function relationship 

data of mutant McbA enzymes for training ML models to predict high-activity variants. To do this, 

we implemented a cell-free protein synthesis approach that does not require laborious 15 

transformation and cloning steps (Fig. 1). Our approach relied on cell-free DNA-assembly18 and 

CFE37 to build site-saturated, sequence-defined protein libraries. This workflow had five steps: (i) 

a DNA primer containing a mismatch introduces a desired mutation through PCR, (ii) the parent 

plasmid is digested, (iii) an intramolecular Gibson assembly forms a mutated plasmid, (iv) a 

second PCR amplifies linear DNA expression templates (LETs), and (v) the mutated protein is 20 

expressed through CFE. In this way, hundreds to thousands of sequence-defined protein mutants 

can be built in individual reactions within a day, and mutations can be accumulated through rapid 

iterations of the workflow. Our approach avoids any potential biases in typical site-saturation 

libraries that arise from the use of degenerate primers. 

 25 

We validated our workflow using the well-characterized, monomeric ultra-stable green fluorescent 

protein38 (muGFP) by targeting four residues that are known to be important for stability and 

fluorescence39,40 (Fig. S2). When building our site-saturated library targeting these four residues 

(77 variants), we found a high tolerance to primer design deviations (e.g., homologous overlaps, 

melting temperatures) (Fig. S3 and S4) and that LETs of muGFP variants conferred all desired 30 

mutations (Fig. S5). Full-length soluble proteins indicated that changes in fluorescence were not 

due to changes in expression or solubility (Fig. S6). Mapping the protein site-saturated landscape 

not only highlights residues that are crucial for fitness (e.g., residues composing the fluorophore 

and impacting hydrophobic core packing were intolerable to mutations38) but also provides insight 

into the general mutability of sites.  35 

 

After validation, we applied our workflow to McbA to generate sequence-function relationship data 

that could train ML models to expedite our engineering campaigns. We initially engineered McbA 

to synthesize three high-value molecules identified by our substrate scope evaluation: (i) the 

monoamine oxidase A inhibitor, moclobemide, due to McbA’s high promiscuity towards this 40 

reaction33 (Fig. 2C (5); 12% wt conversion); (ii) metoclopramide, due to the unique challenge 

posed by the acid component containing a free amine that could potentially compete with the 

intended amine  (Fig. 2C (8); 3% wt conversion); and (iii) cinchocaine, which contains a unique 

acid component but shares the same amine fragment as metoclopramide (Fig. 2C (16); 2% wt 

conversion). By performing these engineering campaigns in parallel we hoped to infer mutations 45 

that influence substrate specificity for the amine (shared mutations) and the acid (unique 

mutations) that may lead to general design principles for McbA.  
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Using relatively high substrate concentrations and low enzyme loading as a step towards more 

industrially relevant reaction conditions (Fig. S7), we performed a hot spot screen (HSS) for each 

molecule consisting of site-saturation mutagenesis on a wide sequence space to identify residue 

positions that, when mutated, positively impact fitness (Fig. 3A). Guided by the crystal structure 5 

of McbA (PDB: 6SQ8), we selected 64 residues that completely enclosed the active site and 

putative substrate tunnels. Our HSS of these residues (64 residues x 19 amino acids = 1,216 total 

single mutants) revealed multiple residues that had a positive impact on moclobemide (Fig. 3B), 

metoclopramide (Fig. 3C), and cinchocaine (Fig. 3D) synthesis when mutated compared to wt-

McbA as measured by liquid chromatography-mass spectrometry (LC-MS).  10 
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Fig. 3: Rapid generation of sequence-fitness landscape data for ML-guided directed evolution of 
McbA. (A) Workflow schematic: a supervised ridge regression model is trained on percent conversion data 
of four mutable sites selected from the HSS, with sequence features consisting of an amino acid encoding 
augmented with a zero-shot prediction of enzyme fitness. From a training set of approximately 80 single 5 
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mutants, we extrapolate higher order mutations and test the top 25 predictions. (B-D) Hot spot screen of 
64 identified residues in McbA showing percent conversion of (B) moclobemide, (C) metoclopramide, and 
(D) cinchocaine normalized to WT (n = 1). Highly mutable sites, or hot spots, are highlighted.  

 

ML-guided, cell-free expression for protein engineering 5 

 
With a large data set at hand for multiple, distinct single McbA mutants, we set out to leverage 

ML models to accelerate the engineering of McbA for the production of small molecules across 

diverse regions of chemical space. We sought to use single mutant data derived from the HSS to 

fit augmented ridge regression models—given their power and simplicity for protein 10 

engineering41—allowing us to predict higher-order mutants with increased activity (Fig. 3A).  

 

We first selected a predictive model architecture. McbA variant feature representations consisted 

of site-specific amino acid encodings concatenated with a zero-shot fitness prediction41. We 

considered several amino acid encodings, ranging from simple one-hot encodings to more 15 

complex descriptors that attempt to incorporate amino acid physiochemical properties42–45. We 

also explored benchmark protein variant fitness predictors to incorporate universal, evolutionary, 

and structural based zero-shot predictions. We tested three specific fitness predictors: the 

Evolutionary Scale Modeling (ESM)-1b transformer46 trained on the UniRef50 database 

(universal), an EVmutation (EC)35 probability density model trained on an MSA of evolutionarily 20 

related sequences (evolutionary), and MAESTRO47 to estimate structure-based changes in 

unfolding free energy (structural). Training and hyperparameter tuning were performed using 

single mutant data (n = 77) from the HSS (top four hot spots; Fig. 3B and Fig. 3C). 

 

In parallel, we conducted a more traditional directed evolution campaign on each amide product 25 

(moclobemide, metoclopramide, and cinchocaine) via iterative saturation mutagenesis (ISM). 

This would provide valuable higher order mutations to validate and benchmark model 

performance given our objective of extrapolating from single to higher order mutations.  

 

For moclobemide, we selected six residues from the HSS to mutate over three rounds of ISM 30 

(Fig. S7). We first fixed the top mutation from the HSS (V177S) and performed site-saturation 

mutagenesis on the five additional residues. By reintroducing previously fixed mutations in 

subsequent rounds, we explored potential epistatic interactions (e.g., S177 was saturated in ISM 

round 2, given V177S was incorporated before A323F). In addition, we completely explored all 

combinatorial double mutants of the top two residues, which showed directly additive impacts for 35 

moclobemide synthesis (Fig. S7). After three rounds of ISM, we identified a quadruple mutant 

(qm-McbAmoc) with increased activity—from 12% for wt-McbA to 96% conversion—for the 

synthesis of moclobemide (Fig. S7). We characterized the apparent steady-state kinetic 

parameters and stability of these enzyme mutants from each round of ISM. Specifically, we 

expressed, purified, and evaluated each McbA variant observing a 42-fold increase in catalytic 40 

efficiency from wt-McbA to qm-Mcbamoc (kcat/KM increased from 18.2 to 769 M-1min-1) for the amine 

(Fig. S8 and S9). The melting point did not significantly change between wt-McbA and qm-

McbAmoc, but the second mutation (A323F) increased Tm by 5.81 ± 0.09 °C when added to the 

first mutation (V177S) (Fig. S10). Additionally, we showed that we could make milligram quantities 

of moclobemide in a 10-mL reaction (87% isolated yield) and confirmed the structure by NMR 45 

(Fig. S11 and Fig. S12). 
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Three rounds of ISM for metoclopramide yielded a quadruple mutant that displayed nearly 30-fold 

activity over wt-McbA (Fig. S13). The campaign for cinchocaine was more difficult to navigate 

and we failed to observe beneficial mutations beyond a double mutant, despite taking multiple 

ISM paths (Fig. S14). This result (i.e., running into dead ends during ISM) supported the need to 5 

include ML models in our framework that might capture epistatic interactions. We used the ISM 

data for moclobemide and metoclopramide containing double, triple, and quadruple mutants (n = 

243 for moclobemide and n = 169 for metoclopramide) to evaluate each model’s performance, 

while cinchocaine would provide a unique pressure-test for our identified top-performing model. 

  10 

Model prediction performance was first evaluated using the normalized discounted cumulative 

gain (NDCG)14,48, an evaluation metric that scores models on their ability to correctly rank high-

fitness variants (aligning with our experimental goal of discovering high-fitness variants with 

minimal screening burden), which generally matched results from the Spearman rank correlation 

coefficient (Fig. S15). The evaluated augmented models outperformed the ridge regression model 15 

alone. We also tried combining predictors in our variant features (e.g., predictions from both ESM-

1b and EVmutation), but no increase in model performance was observed. Lastly, we tested the 

necessity of the entire site saturation dataset (n = 77) for training models to achieve high predictive 

performance. We withheld variants in the training set to reflect common protein engineering 

strategies that do not exhaustively search the sequence space, including reduced codon libraries 20 

(NDT49 and NRT50), single amino acid scans51 (here, we combine the commonly used glycine, 

alanine, proline, and cysteine scans), and reduced alphabets that naturally group amino acids by 

physiochemical properties (BLOSUM52). When training the same augmented ridge regression 

model with Georgiev encodings, this analysis indicated that utilizing all the data gathered from 

the site saturation dataset provides more predictive power (Fig. 4A-B). This can likely be 25 

attributed to the nature of the rich datasets mostly containing mutants with non-zero activity (64/77 

for moclobemide and 62/77 for metoclopramide), preventing “holes” in training sets14. Moving 

forward, we decided to use the site saturation dataset and the augmented EVmutation model with 

Georgiev encodings given the strong predictive performance among both compounds and the 

fact that the already-trained probability density model simplified application to other compounds. 30 

EVmutation is also less computationally resource and time intensive than ESM. 

 

Using our trained ML models, we screened 204 combinatorial enzyme variants for the synthesis 

of moclobemide, metoclopramide, and cinchocaine in silico and selected the top 25 predictions 

to subsequently build and test. We found that the augmented ML model was able to predict McbA 35 

variants enriched in high activity for each amide product when tested experimentally, some even 

surpassing qm-McbA from both moclobemide and metoclopramide ISM campaigns (Fig. 4C-E 

and Table S1). Notably, the best predicted mutant for metoclopramide contained a mutation 

(A424S) that was superseded in the HSS by a more active mutation (A424T) carried forward in 

ISM, indicating the model found a superior mutant that would have been overlooked using ISM 40 

alone. The best predicted variant for cinchocaine had significantly higher activity than the best 

single mutation on its own and surprisingly contained a mutation (A205L) that decreased activity 

compared to wt-McbA in the HSS (Fig. S16 and Fig. S17); we could not rationally select and 

combine mutations from the HSS to reach the same results. These results show that our ML-
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guided strategy can discover high fitness variants for a variety of molecules using the same 

starting enzyme while avoiding path dependencies and reducing the screening burden.  

 

 
Fig. 4: ML-guided directed evolution predicts highly active mutants with a lower screening burden 5 

than iterative site saturation mutagenesis. (A,B) Analysis of model fidelity with training sets built with 
smaller libraries than saturation mutagenesis, including reduced codon sets (NDT, NRT) and reduced 
amino acid alphabets based on BLOSUM50. Comparing measured versus predicted activity on withheld 
ISM rounds is shown for models trained on the complete saturation mutagenesis dataset for both 
moclobemide (moc) (A), and metoclopramide (meto) (B). (C-E) The experimentally validated percent 10 

conversion (n = 3) of ML-predictions for moclobemide (C), metoclopramide (D), and cinchocaine (E) with 
the quadruple mutant from ISM (M4) colored grey. For cinchocaine, the ML model predictions did not 
include the highest performing mutant from ISM. Wild type McbA is colored dark gray. 

 

ML-guided biocatalytic diversification for high-value pharmaceuticals 15 

 
We next applied our ML-guided framework to predict distinct McbA mutants for the synthesis of 

an additional six pharmaceutical compounds. Starting with an identified target reaction from our 

substrate scope screen (Fig. 2), we used the same instance of our 1,216 single mutant McbA 

variant library from above to perform an HSS (7,302 unique reactions total), select four hot spots, 20 

and train our ML model to predict higher order mutants with increased activity (Fig. 5A; Fig. S18-

23). For each reaction, the top 24 predictions were tested, and the best variant was expressed, 

purified, and compared to wt-McbA activity. We observed increases in yields ranging from 1.6-

fold to 34-fold over wt-McbA for the six compounds we tested (Fig. 5B-G and Fig. S18-23). For 

each compound, the best predicted mutant always outperformed the best rational design (i.e., 25 

combining the four best mutations from the HSS without using the ML model; Table S3-5). Some 

mutants give only modest improvements, which may be an artifact of low signal-to-noise in the 

hot spot screens for some of the target compounds that were only detectable by MS. This can 

lead to flat fitness landscapes that are more difficult to model. Nonetheless, our framework yielded 

enzyme mutants with increased activity for multiple products that were initially only observed in 30 

trace amounts. 
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We also compared how efficiently some enzyme variants perform each reaction step (Fig. S24). 

For example, wt-McbA appears to be proficient at the adenylation step for troxipide (adenylating 

3,4,5-trimethoxybenzoic acid), but unable to catalyze amide bond formation (Fig. 5G). The 

engineered enzyme variant can subsequently accept the amine, leading to a large decrease in 5 

the observed intermediate. Serendipitously, the engineered McbA variants for each target product 

also displayed strict regioselectivity despite the lack of any selective pressure to maintain it. This 

is exemplified by the quadruple mutant for troxipide that exhibits a 34-fold increase in activity 

without any sacrifice in specificity. Similarly, stereoselective preferences with S-sulpiride are 

maintained. Taken together, our ML-guided framework allows us to use functional data from 10 

single mutant enzyme variants to predict superior higher-order mutants rapidly and effectively.  

 

 
Fig. 5: ML-guided engineering of distinct amide synthetases for the biosynthesis of a broad panel 
of small-molecule pharmaceuticals. (A) The strategy we utilized for the machine learning-guided protein 15 

engineering of McbA. First, we identified non-native reactions that wt-McbA can catalyze and prioritized 
those that produce valuable small-molecule pharmaceuticals. Second, an HSS of 64 residues is used to 
down-select residues that positively impact activity. Third, an augmented ridge regression model is trained 
on data from the HSS, and ML predictions are experimentally tested. (B-G) Comparison of the highest 
activity predicted variant for a panel of small-molecule pharmaceuticals compared to wt-McbA and an 20 

authentic standard. Enzyme concentration was normalized to 0.5 mg/mL (approximately 9 µM) and 
products were analyzed by (RP)-HPLC. The fold-increase in yield observed compares wt-McbA to ML-
McbA (n = 3). Representative HPLC traces of product (red), acid substrate (purple), and adenylated acid 
(orange) for each reaction are shown. 

 25 

 

Discussion  
 
In this work, we establish a high-throughput, ML-guided protein engineering framework for 

predictive design that does not require specialized computational resources. This framework 30 

uniquely integrates a cell-free gene expression and mutagenesis method, ML to expedite directed 
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evolution campaigns, and divergent evolution to convert a generalist enzyme into multiple 

specialists. We showcased this framework by rapidly navigating nine protein engineering 

campaigns for the amide synthetase McbA, six of which were performed simultaneously. Through 

efforts to build ML models and all ISM rounds, we comprehensively mapped the sequence-

function landscape of McbA by assessing 2,856 variants of McbA, 1,100 possible amide products, 5 

and 12,584 substrate pair-mutant reactions. We identified 19 unique residue positions within 

McbA that significantly impact biocatalysis. Across all nine engineered McbA variants, we made 

a total of 21 different mutations occurring across 14 different residues (Fig. S25). In all cases, 

newly generated enzyme variants demonstrated improved activity relative to wt-McbA variants 

(1.6-fold to 42-fold improvement, including moclobemide). In one example, an enzyme variant for 10 

moclobemide synthesis achieved 96% conversion (a 42-fold increase in catalytic efficiency over 

wt-McbA) and was scaled to milligram quantities.  

 

An important feature of our work was the use of ML models trained on single-residue mutations 

to predict higher order mutants with improved fitness. Strikingly, we observed that ML-predicted 15 

enzyme variants with 4 mutations had greater activity than the combination of the four most active 

single-residue mutants alone in each of the nine test cases. In other words, our data suggests 

that one may be able to screen N×20 mutants instead of 20^N in a directed evolution campaign.  

 

Our approach can, in theory, be applied to any enzyme but may require reaction-specific fine-20 

tuning around data collection and ML model generation. In terms of data collection, experimental 

screening methods for biocatalytic reactions remain a bottleneck. Here, because the product 

compounds of McbA were stable in the presence of the cell-free expression lysate and 

chromatographic methods were efficient (e.g., ~3 min/per sample), liquid chromatography-mass 

spectrometry provided a manageable solution, as has been found in other examples53. As a 25 

complement to screening, there will be enzyme engineering applications where selection 

strategies are beneficial (e.g., when a tractable selection method exists, larger jumps in sequence 

space can be made). Engineering campaigns with different proteins may also warrant exploring 

various ML models and parameters. While we saw excellent performance with the augmented 

EVmutation model, alternative fitness goals may also require alternative fitness predictors. For 30 

example, if the goal is to engineer stability, it would reason that a structural-based fitness predictor 

may be superior. There are numerous additional protein variant effect predictors continuously 

pushing the state-of-the-art forward that could improve our predictions54. More complex models 

based on natural language processing may also outperform linear regression46,55. Finally, we note 

that training the ML models on more residues, multi-mutant data (including data from multiple 35 

rounds of mutagenesis or random combinations of mutants that diversify amino acids across the 

entire protein of interest), or kinetic measurements could be beneficial in engineering better 

catalysts. 

 

In sum, our accessible ML-guided, cell-free framework overcomes traditional directed evolution 40 

challenges by circumventing path dependencies that constrain sequence search space in state-

of-the-art methods. This speeds the pace of engineering relative to ISM alone. Our work further 

highlights the versatility of the amide synthetase McbA to be directed to catalyze many unique 

reactions of interest, including those used in small-molecule pharmaceutical production. Looking 

forward, we anticipate that the approach described here, especially when augmented with de 45 
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novo protein design, will accelerate enzyme engineering campaigns to unlock specialized 

enzymes with diverse functions and properties. 

 

Methods 
 5 

Cell-free DNA assembly and gene expression 
DNA libraries were created for both wt-McbA and muGFP. wt-McbA from Marinactinospora 
thermotolerans (UniProt: R4R1U5) was codon-optimized for E. coli and cloned into the pJL1 
plasmid (Addgene, 69496) with an N-terminal CSL-tag56 (CAT-Strep-Linker fusion containing 
Strep-tag II). muGFP was codon-optimized for E. coli and cloned into the pJL1 plasmid without a 10 

purification tag38. 
 
The cell-free DNA library generation was performed as follows: (1) the first PCR was performed 
in a 10-µL reaction with 1 ng of plasmid template added, (2) 1 µL of DpnI was added and incubated 
at 37°C for two hours, (3) the PCR was diluted 1:4 by the addition of 29 µL of nuclease-free (NF) 15 

water, (4) 1 µL of diluted DNA was added to a 3-µL Gibson assembly reaction (self-made)57 and 
incubated for 50 °C for one hour, (5) the assembly reaction was diluted 1:10 by the addition of 36 
µL of NF water, (6) 1 µL of the diluted assembly reaction was added to a 9-µL PCR reaction. All 
cloning steps were set up using an Integra VIAFLO liquid handling robot in 384-well PCR plates 
(Bio-Rad). Primers were designed using Benchling with melting temperature calculated by the 20 

default SantaLucia 1998 algorithm. We have noticed that melting temperatures of alternative 
primer design tools sometimes deviate from those calculated in Benchling, so users should 
consider this when designing primers. The general heuristics we followed for primer design were 
a reverse primer of 58 °C, a forward primer of 62 °C, and a homologous overlap of approximately 
45 °C. All primers were ordered from Integrated DNA Technologies (IDT); forward primers were 25 

synthesized and received in 384-well plates and normalized to 2 µM for ease of setting up 
reactions. Additional information on primer design and the codons we used for all 20 amino acids 
can be found in Fig. S4 and Table S7. All PCR reactions used Q5 Hot Start DNA Polymerase 
(NEB). Additional information on thermocycler parameters can be found in Table S8.  
 30 

To accumulate mutations for ISM, 3 µL of the “winner” from the diluted Gibson assembly plate 
was transformed into 20 µL of chemically competent E. coli (NEB 5-alpha cells). Cells were plated 
onto LB plates containing 50 µg/mL kanamycin (LB-Kan). A single colony was used to inoculate 
a 50 mL overnight culture of LB-Kan, grown at 37 °C with 250 RPM shaking. The plasmid was 
purified using ZymoPURE II Midiprep kits and sequence confirmed. Successive mutations can 35 

then be incorporated via our cell-free DNA library generation method above.  
 
The comprehensive combinatorial double mutant McbA library (used in Fig. S7e) was generated 
by two successive rounds of saturation mutagenesis with no particular residue targeted first. After 
the first site saturation, plasmids containing each mutation were prepared following the above 40 

protocol except 5 mL LB-Kan overnights were used to purify plasmids using ZymoPURE II 
Miniprep kits. These 20 plasmids were used as templates for the next round of site saturation 
mutagenesis to accumulate all 400 double mutants. 
 
All machine learning predicted McbA variants were ordered as gblocks from IDT containing pJL1 45 

5’ and 3’ Gibson assembly overhangs. DNA was resuspended at a concentration of 25 ng/µL. A 
linearized pJL1 plasmid backbone was ordered as a gblock from IDT, PCR amplified, purified 
using a DNA Clean and Concentrate Kit (Zymo Research), and diluted to a concentration of 50 
ng/µL. Gibson assembly was used to assemble the DNA encoding McbA variants with the pJL1 
backbone. 10 ng of purified, linearized pJL1 backbone and 10 ng of gblock insert were combined 50 

in a 3-µL Gibson assembly reaction and incubated at 50 °C for 30 minutes18. The unpurified 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2024. ; https://doi.org/10.1101/2024.07.30.605672doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.30.605672
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

15 

 

assembly reactions were diluted in 60 μL of NF water and 1 μL of the diluted reaction was used 
as the template for a 50-μL PCR reaction (using Q5 Hot Start DNA polymerase) to generate LETs 
for CFPS. 
 

Expression and purification of recombinant proteins 5 

pJL1-McbA plasmid was transformed into chemically competent E. coli BL21 Star (DE3) cells 
(Invitrogen) following the manufacturer’s instructions. Cells were plated onto LB-Kan and 
incubated overnight at 37 °C.  A single colony was used to inoculate a 5 mL overnight culture of 
LB-Kan, grown at 37 °C with 250 RPM shaking. 1 L of Overnight Express TB Medium (Millipore) 
was prepared following the manufacturer’s instructions and supplemented with 100 µg/mL 10 

kanamycin. The TB medium was inoculated the following day using the 5 mL overnight culture 
and grown at 37 °C with 250 RPM shaking until saturation (~ 12-16 hours). Cells were harvested 
by centrifugation (Beckman Coulter Avanti J-26) at 8,000 x g for 10 min at 4 °C. Cell pellets were 
either flash frozen with liquid nitrogen and stored at -20 °C until future use or resuspended in 25 
mL Wash Buffer (100 mM Tris-HCl pH 8.0, 150 mM NaCl, 1 mM EDTA, 10% v/v glycerol). 15 

Resuspended cells were lysed by sonication (QSonica Q700 Sonicator) using six 10 seconds ON 
and 10 seconds OFF cycles at 50% amplitude, and the insoluble fraction was removed by 
centrifugation at 12,000 x g for 20 minutes at 4 °C. Clarified lysates were incubated with 2 mL of 
pre-equilibrated Strep-Tactin XT Superflow resin (IBA Lifesciences) with shaking for 30 min at 4 
°C. Resin was loaded onto a gravity-flow column and washed three times with 20 mL Wash Buffer. 20 

McbA protein was eluted with 10 mL of Elution Buffer (100 mM Tris-HCl pH 8.0, 150 mM NaCl, 1 
mM EDTA, 50 mM biotin, 10% v/v glycerol) and concentrated with a 15 mL Amicon Ultra 
Centrifugal filter (Millipore Sigma; 30 kDa cutoff). Purified McbA was buffer exchanged into 
Storage Buffer (50 mM HEPES pH 7.5, 300 mM NaCl, 10 mM MgCl2, 10% v/v glycerol) using a 
pre-equilibrated PD-10 desalting column (Cytiva). McbA was stored at 4 °C for immediate use 25 

(<48 hours) or -20 °C for longer term storage. Protein concentration was quantified by measuring 
A280 on a NanoDrop 2000c (Thermo Scientific), with McbA extinction coefficient and molecular 
weight calculated by Expasy ProtParam. wt-McbA and the six engineered McbA variants found in 
Fig. 5 were purified in this manner. 
 30 

muGFP activity assay 
Performance of muGFP variants were quantified by measuring fluorescence on a plate reader 
(BioTek Synergy H1) using an excitation of 485 nm and emission of 528 nm. 10 µL of crude CFPS 
reaction containing an expressed muGFP variant was transferred to a black, round bottom 384-
well plate (Nunc) prior to measurements. 35 

 

Amide synthetase activity assay 
All high-throughput assays (hot spot screen, iterative site saturation mutagenesis, substrate 
scope, ML predictions validation, and ML prediction exploration) were assembled in 384-well 
plates (Bio-Rad) using an Integra VIAFLO liquid handling robot. A 2x reaction mix containing the 40 

substrates (ATP, acid, amine, and DMSO) with excess volume filled with 50 mM potassium 
phosphate pH 7.5 was dispensed as 3-uL aliquots in a 384-well plate. The amidation assay was 
initiated by adding 3 µL of crude CFPS reaction containing an expressed McbA variant, with final 
concentrations of 25 mM ATP, 25 mM acid, 25 mM amine, 10% v/v DMSO, and ~1 µM of enzyme 
(determined by 14C-leucine incorporation using previously described protocols17). Stock solutions 45 

of the acids were prepared in DMSO and this was taken into account to reach 10% v/v DMSO. 
For reactions that were performed in triplicates, 3 µL from the same 10-µL CFPS reaction was 
used for three separate assays. The reaction was incubated at 37 °C for 16 hours and then 
quenched with 25 µL of methanol. Plates were stored at -20 °C until prepared for analysis via LC-
MS.  50 
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Amidation assays for the purified McbA variants found in Fig. 5 were set up similarly as described 
above in 384-well plates. 8-µL reactions were assembled in triplicate, containing 25 mM ATP, 25 
mM acid, 25 mM amine, 10 mM MgCl2, 10 U/mL pyrophosphatase (Sigma I5907), 0.5 mg/mL 
McbA, 10 % v/v DMSO, and volume to fill of 50 mM potassium phosphate pH 7.5. For assaying 
the production of cinchocaine and procainamide, substrates were decreased in stoichiometric 5 

amounts to 20 mM and 10 mM, respectively. This was to compensate for an observed poor 
solubility of these two acids (2-butoxyquinoline-4-carboxylic acid and 4-aminobenzoic acid) in the 
purified reaction at 10% v/v DMSO. Reactions were incubated at 37 °C for 16 hours and then 
quenched with 25 µL of methanol. Samples were stored at -20 °C until prepared for analysis via 
LC-MS. The CAS numbers of all chemicals used in the hot spot screens, as well as the amide 10 

standards we purchased, can be found in Table S13. 

 

Amide synthetase & ATP regeneration assay  
Polyphosphate kinase, PPK12 from an unclassified Erysipelotrichaceae (Uniprot: 
A0A847P5F2_9FIRM), was cloned, expressed, and purified to homogeneity as previously 15 

described58. 20-µL reactions were assembled in triplicate, containing 25 mM amine, 25 mM acid, 
100 mg/mL polyphosphate (Sigma 1.06529), 10 mM MgCl2, 10 U/mL pyrophosphatase (Sigma 
I5907), 0.5 mg/mL McbA, 0.5 mg/mL PPK12, 10 % v/v DMSO, and volume to fill of 50 mM 
potassium phosphate pH 7.5. A 2-fold serial dilution of AMP was prepared and added to the 
reaction mix to final concentrations ranging from 25 mM to 0.02 mM. Reactions were incubated 20 

at 37 °C for 16 hours and then quenched with 25 µL of methanol and analyzed by LC-MS. 

 

Preparative scale biosynthesis of moclobemide  
Scaled amidation assays for the enzymatic preparation of moclobemide were set up similarly as 
described above. A 10-mL reaction containing 25 mM ATP, 25 mM acid, 25 mM amine, 10 mM 25 

MgCl2, 10 U/mL pyrophosphatase (Sigma I5907), 0.5 mg/mL McbA, 10 % v/v DMSO, and volume 
to fill of 50 mM potassium phosphate pH 7.5. After 16 hours, the reaction was quenched and 
product was extracted by the addition of 30 mL of ethyl acetate (3 x 10 mL). The organic phases 
were collected, washed with 0.2 M NaOH (2 x 10 mL), and brine (2 x 10 mL), dried over MgSO4, 

filtered, and the solvent was evaporated under reduced pressure to afford the desired product as 30 

a white powder (58 mg, 87% isolated yield) without any further purification. The 1H and 13C NMR 
(found below and in Fig. S12) are in good agreement with those previously reported59. Spectra 
for 1H and 13C NMR were recorded at room temperature with a Bruker Avance III 500 MHz system. 
Chemical shifts are reported in δ (ppm) relative units to residual solvent peaks DMSO-d6 (2.50 
ppm for 1H and 39.5 ppm for 13C). Splitting patterns are assigned as s (singlet), d (doublet), t 35 

(triplet), q (quartet), quint (quintet), m (multiplet). Coupling constants are reported as Hz, followed 
by integration.  
 
1H NMR (500 MHz, DMSO-d6) δ 8.47 (t, J = 5.7 Hz, 1H), 7.82 – 7.75 (m, 2H), 7.51 – 7.45 (m, 

2H), 3.50 (t, J = 4.6 Hz, 4H), 3.30 (d, J = 13.0 Hz, 3H), 2.38 (t, J = 7.0 Hz, 3H), 2.35 – 2.31 (m, 40 

3H) 
13C NMR (126 MHz, DMSO) δ 165.51, 136.38, 133.69, 129.55, 128.85, 66.66, 57.77, 53.76, 

37.06. 

 

LC-MS analytics  45 

Amide products (along with acid substrates and some adenylated acid intermediates) were 
analyzed using an Agilent G6125B Single Quadrupole LC/MSD system equipped with an 
electrospray ionization source set to positive ionization mode. The quenched samples were 
centrifuged for 10 min at 4,500 x g to remove precipitated proteins. A separate 384-well plate for 
sample injection into the HPLC-MS was prepared by diluting 5 µL of the quenched samples with 50 

25 µL of methanol using the Integra VIAFLO. Trace amounts of compounds were detected using 
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MS, while many compounds were present in high enough concentration to quantify by diode array 
detector (DAD) at 254 nm. Compounds were separated on a Luna C18 Column (Phenomenex 
00D-4251-B0) using mobile phases (A) H2O with 0.1% formic acid and (B) Acetonitrile. The 
general method for chromatographic separation was carried out using the following gradients at 
a constant flow rate of 0.5 mL/min: 0 min 5% B; 1 min 5% B; 4 min 95% B; 4.5 min 95% B; 5 min 5 

5% B. For hot spot screens, an expediated method was used with the following gradients at a 
constant flow rate of 0.5 mL/min: 0 min 13% B; 1 min 13% B; 2.2 min 95% B; 3.2 min 95% B; 3.5 
min 13 % B. For the MS, capillary voltage was set at 3 kV, and nitrogen gas was used for 
nebulizing (35 psig) and drying (12 l/min, 350 °C). The MS was calibrated using Tuning Mix 
(Agilent G2421-60001) before measurements were taken. MS data were acquired with a scan 10 

range of 50-600 m/z with various SIM m/z’s according to which compound we were screening for. 
LC-MS data were collected and analyzed using Agilent OpenLab CDS ChemStation software. 
The product yield was estimated by dividing the DAD peak area for the amide product by the 
sums of the peak areas of both the amide and the acid substrate. An exact quantitative yield for 
moclobemide was recorded after its preparative scale synthesis and isolation.  15 

 
Melting temperature determination 
Protein melting temperature was determined using a Jasco J-810 circular dichroism 
spectrophotometer with a 10 mm path length cuvette monitored at 222 nm. McbA samples were 
first buffer exchanged into a 1X phosphate buffered saline solution, pH 7.4, and diluted to 0.2-0.4 20 

mg/mL. 

 
Enzyme kinetics 
McbA apparent kinetics for the amine pair of moclobemide (4-(2-aminoethyl)morpholine) were 
determined by enzymatically coupling amide bond formation (and the concomitant release of AMP 25 

from the acyl-AMP intermediate by its substitution with the amine) with the oxidation of NADH 
(Fig. S9). Reactions contained 100 mM MOPS-KOH pH 7.8, 5 mM MgCl2, 2.5 mM 
phosphoenolpyruvate, 5 mM ATP, 0.3 mM NADH, 50 mM 4-chlorobenzoic acid, 15 U/mL pyruvate 
kinase and lactate dehydrogenase enzyme mix (Sigma-Aldrich P0294), 25 U/mL myokinase 
(Sigma-Aldrich 475941), and various concentrations (50-200 µg/mL) of the studied McbA variant. 30 

As the acid here (4-chlorobenzoic acid) has poor solubility in water and was dissolved in DMSO, 
the final reactions contained 10% v/v DMSO (equivalent to our amidation screens). 180-µL 
reactions were first equilibrated at 30 °C for 3 minutes and then initiated by adding 20 µL of amine.  
The initial velocity was determined for different concentrations of amine (0.1 mM – 50 mM) by 
measuring NADH absorbance at 340 nM on a Cary 60 UV-Vis (Agilent). Data was collected and 35 

analyzed using the Cary WinUV Kinetics Application software (Agilent). Michaelis-Menten graphs 
were plotted in GraphPad Prism and fit using the default Michaelis-Menten non-linear regression 
analysis tool. 
 
Kinetics for the acid pair of moclobemide (4-chlorobenzoic acid) were measured similarly as 40 

described above, except the amine was held constant at 50 mM and the reaction was initiated by 
addition of various amounts of the acid. The final DMSO concentration was still held constant at 
10% v/v. We observed non-Michaelis-Menten behavior when attempting to determine the kinetics 
for the acid, in what appeared to be substrate inhibition by the acid (data not shown). We also 
attempted to measure the acid adenylation step directly by enzymatically coupling acyl-AMP 45 

formation (and the concomitant release of PPi) with the oxidation of NADH to further probe the 
reaction mechanism. The Piper™ pyrophosphate assay kit (Fisher Scientific P22062) was used, 
but the addition of small concentrations of DMSO resulted in the precipitation of enzymes found 
in the kit. 

 50 

Amino acid encodings 
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Five different amino acid encoding strategies were studied here following the work of Wittman et 
al. and Vornholt et al.14,60: one-hot, Georgiev, VHSE, z-scales, and physical descriptors. Beyond 
one-hot encodings (that contain no information about the nature of the amino acid at each 
position), we also wanted to include encodings that attempt to encapsulate physiochemical 
properties of amino acids. We briefly explain these encodings below (in order of most to least 5 

parameters) and encourage readers to visit these sources for further information. To make 
informative numerical representations of amino acid properties, these strategies perform principal 
component analysis (PCA) of different manually curated sets of either experimentally measured 
or computationally predicted/estimated properties. Georgiev42 features (19-parameters) are 
principal components of the over 500 amino acid indices taken from the AAindex database. 10 

VHSE43 features (8-parameters) are principal components of 50 variables, focused on 
hydrophobic, steric, and electronic properties. Z-scales44 (5-parameters) features are principal 
components of 26 variables, focused on lipophilicity, size, and polarity. Physical descriptors45,61 
(3-parameters) features are derived from a rational ad hoc modification of principal components 
of hydrophobic and steric properties of peptides. For all strategies, we first generated encodings 15 

for the entire combinatorial library tested (stored in a tensor of “420 unique variants” x “4 amino 
acids” x “n-parameters”, where n-parameters is equal to the number of amino acids for one-hot). 
The last two dimensions of the tensor were then flattened to generate a matrix. Specifically for 
the physiochemical encodings (excluding one-hot), each column of the matrix was standardized 
(mean-centered and unit-scaled). 20 

 
Zero-shot predictions 
Evolutionary: The EVmutations35 probability density model was trained using the EVcouplings 
webserver (https://evcouplings.org/) with default parameters, with the input sequence for McbA 
taken from UniProt (R4R1U5). The model we selected had a bitscore inclusion threshold of 0.7. 25 

The model and code for replicating zero-shot predictions are provided in our GitHub repository. 
The mutation effects prediction code provided in the EVcouplings GitHub repository 
(https://github.com/debbiemarkslab/EVcouplings/blob/develop/notebooks/model_parameters_m
utation_effects.ipynb) was used as a template. Features for the augmented models were derived 
from the sequence statistical energy relative to wild type. 30 

 
Universal: Predictions using the ESM-1b46 pre-trained transformer language model were made 
using the code provided from the excellent work of Wittman et. al on machine learning-guided 
directed evolution (https://github.com/fhalab/MLDE) with the ESM-1b model provided in the ESM 
GitHub repository (https://github.com/facebookresearch/esm). Briefly, a mask-filling protocol was 35 

used to predict the probability of different mutants by presenting the model with the entire 
sequence and “masking” a position of interest. We used a naïve mask-filing approach, which 
considers each variable position as independent from each other. This mask-filing approach was 
used as it is less computationally expensive and provided slightly superior predictions than a 
conditional approach (which does not assume independence of variable positions) in this previous 40 

work. A complete description of the code can be found in the original publication and the 
associated GitHub repository. Features for the augmented models were derived from the 
sequence log-probability relative to wild type.  
 
Structural: Structural-based predictions were made using the MAESTRO47 command line tool for 45 

Windows (v1.2.35). We used the Protein Data Bank (PDB) structure for McbA (6SQ8) as the input 
and calculated changes in stability (unfolding free energy) with the ‘evalmut’ command. Features 
for the augmented models were derived using the ‘energy’ output.   

 
Machine learning-guided directed evolution 50 

Ridge regression models were augmented following the code accompanying the elegant work of 
Hsu et al.41 (https://github.com/chloechsu/combining-evolutionary-and-assay-labelled-data). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2024. ; https://doi.org/10.1101/2024.07.30.605672doi: bioRxiv preprint 

https://evcouplings.org/
https://github.com/debbiemarkslab/EVcouplings/blob/develop/notebooks/model_parameters_mutation_effects.ipynb
https://github.com/debbiemarkslab/EVcouplings/blob/develop/notebooks/model_parameters_mutation_effects.ipynb
https://github.com/fhalab/MLDE
https://github.com/facebookresearch/esm
https://github.com/chloechsu/combining-evolutionary-and-assay-labelled-data
https://doi.org/10.1101/2024.07.30.605672
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

19 

 

McbA variant sequence featurization was performed by concatenating zero-shot predictions with 
site-specific amino acid encodings. Zero-shot predictions were first standardized and regularized 
by a common regularization strength (10-8). The L2 regularization strength for ridge regression (α) 
was determined during hyperparameter tuning using cross-validation. For our complete code 
used in this work, please see our accompanying GitHub repository at 5 

https://github.com/grantlandwehr/accelerated-enzyme-engineering. Given some changes made 
between initial model development and reimplementation of the code for publication (e.g. 
hyperparameter tuning cross validation scheme, search range of the regularization coefficient α, 
etc.) there are minor differences in predictions ranked 23-25 for metoclopramide and 
moclobemide found in Fig. 4. 10 

 
Model evaluation and selection were first performed retrospectively by using the assay-labeled 
datasets from our moclobemide and metoclopramide engineering campaigns. Augmented models 
(using combinations of the above zero-shot predictors and amino acid encodings) were trained 
on the single site saturation libraries for four residues (n ≈ 80) and tested on the withheld higher-15 

order mutants from the additional rounds of saturation mutagenesis (n ≈ 200). Hyperparameter 
turning of α was performed using repeated 5-fold cross-validation (with 20 repeats) by randomly 
sampling 80% of the training data and testing on the withheld 20%; model performance was 
evaluated using mean squared error (MSE). With the optimized hyperparameter, all trained 
models were used to make predictions on the withheld test set. Spearman correlation coefficient 20 

and NDCG were used to select the best zero-shot predictor and encoding strategy, with a 
preference given to NDCG.  
 
After identifying the best model (which in our case was augmenting the EVmutation probability 
density model with Georgiev encodings), we made predictions on the entire combinatorial dataset 25 

(n = 160,000). The top 25 predictions for moclobemide and metoclopramide were then 
experimentally tested (Fig. 4). Model training and predictions for the remaining seven amide 
products was performed similarly as above.  

 
Data collection and analysis 30 

All statistical information provided in this manuscript is derived from n = 3 independent 
experiments unless otherwise noted in the text or figure legends. Error bars represent 1 s.d. of 
the mean derived from these experiments. Data analysis and figure generation were conducted 
using Excel Version 2304, ChimeraX Version 1.562, GraphPad Prism Version 9.5.0, and Python 
3.9 using custom scripts available on GitHub. muGFP fluorescence was measured on a BioTek 35 

Synergy H1 Microplate Reader and analyzed using Gen5 Version 2.09.2. Autoradiograms were 
performed as previously described and scanned using the Typhoon FLA 7000 Imager v1.263.  
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