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Abstract

Bacterial microcompartments (MCPs) are protein-based organelles that encapsulate

metabolic pathways. Metabolic engineers have recently sought to repurpose MCPs to

encapsulate heterologous pathways to increase flux through pathways of interest. As MCP

engineering becomes more common, standardized methods for analyzing changes to

MCPs and interpreting results across studies will become increasingly important. In this

study, we demonstrate that different imaging techniques yield variations in the apparent size

of purified MCPs from Salmonella enterica serovar Typhimurium LT2, likely due to variations

in sample preparation methods. We provide guidelines for preparing samples for MCP imag-

ing and outline expected variations in apparent size and morphology between methods.

With this report we aim to establish an aid for comparing results across studies.

Introduction

Scientific research has recently come under fire for what is being dubbed a crisis of reproduc-

ibility. Current studies estimate that 75–90% of findings in high-profile journals are not repro-

ducible [1]. The issue has seeped into fields across every domain of scientific inquiry [2].

While the cause of any given irreproducible result will vary from case to case, a lack of tech-

nique standardization across studies can lead to artefactual results or false conclusions [3]. In

fields in which different techniques are employed to test similar hypotheses, it is important to

place results into the proper context and understand the limitations of each technique. Here,

we provide guidelines for technique standardization and result interpretation in the bacterial

microcompartment engineering field.

Bacterial microcompartments (MCPs) are protein-based organelles found in diverse species

of bacteria [4–6]. These were originally identified in cyanobacteria and were hypothesized to
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be viruses based on their appearance [7,8]. However, these structures were later determined to

be important for the carbon concentrating mechanism for certain species of autotrophic

microbes [9–12]. Since then, numerous diverse types of MCPs have been identified in species

ranging from cyanobacteria and halophilic ocean-dwelling bacteria, to enteric pathogens and

soil-dwelling microbes [13–15]. In addition to the cyanobacterial compartments used for car-

bon fixation, many MCPs are used by enteric pathogens for the metabolism of unique carbon

sources that move through toxic or volatile intermediates, imparting a competitive advantage

[16–19].

The flagship archetype for metabolic MCPs is the 1,2-propanediol utilization (Pdu) MCP

found in Salmonella enterica. The Pdu MCP encapsulates the enzymatic machinery necessary

for metabolism of 1,2-propanediol (1,2-PD), a carbon source found in the gut of Salmonella
hosts [16]. The 1,2-PD metabolic enzymes are surrounded by a protein shell composed of mul-

tiple types of trimeric, pentameric, and hexameric shell proteins. The reported size of these

irregularly-shaped protein organelles varies widely from 77–220 nm in diameter (S1 Table),

and rigorous methods for size quantification are sparse [8,13,16,20–24].

The Pdu MCP has been studied in-depth since the early 1990s, but it has recently increased

in popularity due to its potential utility in metabolic engineering [25–27]. Metabolic engineers

have sought to increase flux through target pathways of interest by increasing local concentra-

tions of enzymes and their substrates [28]. MCPs can accomplish this task and offer the poten-

tial added benefit of sequestering toxic or volatile intermediates from damaging or escaping

the cell [29,30]. They also have the potential to reduce unwanted side reactions and provide

private cofactor pools separate from central metabolism [31].

Recent efforts to engineer MCPs focused on loading heterologous proteins to the lumen of

these structures, as well as modifying the MCP shell to alter substrate and product diffusion

[24,32]. Even modest engineering efforts can affect the size, shape, and morphology of MCPs.

For example, knocking out or over-expressing different shell proteins leads to dramatic

changes in the shape of MCPs, with many appearing to be long, hollow tubes [33–37]. As engi-

neering efforts continue, it will become increasingly important to have a standardized set of

tools for the field to determine and compare the size, shape, and morphology of engineered or

altered MCPs across different studies. To date, there is no widely agreed-upon method for

visualizing and measuring MCPs, with labs across the field utilizing their own preferred tech-

nique. Here we demonstrate that different techniques can yield variable apparent results, even

on identical samples. We provide an outline for choosing an appropriate technique and subse-

quently correlate the results across the many visualization and sizing techniques used in the

field.

Methods

Microcompartment expression and purification

Intact Pdu MCPs were purified from lysed cultures of Salmonella enterica serovar Typhimur-

ium LT2 using a centrifugation process as previously described [38–40]. Briefly, starter cul-

tures were grown in 5 mL of LB-Miller for 24 hours at 30˚C, 225 RPM and subsequently

subcultured 1:1000 into 200 mL of no carbon-E (NCE) minimal media (29 mM KH2PO4, 34

mM K2HPO4, 17 mM Na(NH4)HPO4, 1 mM MgSO4, and 50 μM ferric citrate) supplemented

with 42 mM succinate as a carbon source and 55 mM 1,2-propanediol for MCP induction.

NCE cultures were grown at 37˚C, 225 RPM to a final target OD600 of ~1–1.5, after which they

were harvested and lysed. Cells were lysed chemically as previously described using a 1% (w/v)

octyl thioglucoside solution in 20 mM Tris (pH 7.5) [38–40]. The lysed cultures were centri-

fuged at 12,000 x G for 5 minutes to remove cell debris. MCPs were then pelleted from the
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resulting supernatant through centrifugation at 21,000 x G for 20 minutes and collected. The

total protein concentration of MCP samples was measured using the PierceTM BCA Protein

Assay Kit (Thermo Scientific) per the manufacturer’s instructions, and concentrations were

normalized as necessary for each analysis method. All MCP samples were stored at 4˚C until

use and were prepared for analysis within 5 days of purification to avoid MCP aggregation and

degradation [41]. The same three biological replicates were used for negative-stain transmis-

sion electron microscopy (TEM), TEM with hexamethyldisilazane (HMDS), and scanning

electron microscopy (SEM) analyses. Another batch of three biological replicates was used for

analysis by cryo-TEM and TEM of ultra-thin sections. A final batch of three biological repli-

cates was used for analysis via dynamic light scattering (DLS).

Protein electrophoresis

Purified MCPs were assessed for composition by SDS-PAGE as previously described [39]. Briefly,

MCP samples were boiled in Laemmli buffer at 95˚C for 5–7 minutes. The denatured samples

were then loaded onto 15% SDS-PAGE gels and separated at 120 V for 90 minutes. Approxi-

mately 2–2.25 μg total protein was loaded for each sample, as measured by BCA assay. Gels were

then stained with Coomassie and imaged using the Bio-Rad ChemiDoc XRS+ (S1 Fig).

Negative-stain transmission electron microscopy

Samples were set on 400 mesh Formvar-coated copper grids (EMS Cat# FF400-Cu) with a car-

bon film. Grids were treated by glow discharge using a PELCO easiGlow glow discharge clean-

ing system for a total of 10 seconds at 15 mA. MCP samples were placed onto the grids

immediately following glow discharge. We found that staining and contrast were best if MCPs

were left undiluted (between 0.5–1.0 mg/mL). A volume of 10 μL of purified MCPs was

pipetted onto the surface of the grids, which were held in place by negative-action tweezers.

The samples were allowed to sit for 2 minutes before being wicked away with filter paper. Note

that some of the liquid should always be left on the grid to avoid sample collapse. The samples

were washed three times by dipping the grid in a small droplet of deionized water for three sec-

onds. The samples were fixed by placing 10 μL of 2% (v/v) glutaraldehyde onto the grid for 2

minutes. Note that glutaraldehyde should be stored under N2, and the 2% dilution should be

made fresh before each sample preparation session. After the 2-minute incubation, the glutar-

aldehyde was wicked away using filter paper and the sample was washed three times in deion-

ized water. Samples were stained with 1% (w/v) aqueous uranyl acetate (UA) by applying

10 μL of UA to the grids for 2 minutes. The UA was wicked away completely using filter paper.

Note that all samples, fixative, stain, and deionized water were spun at 12,000 x G for 2 minutes

before use to remove any aggregates. Samples were imaged at the Northwestern Electron

Probe Instrumentation Center (EPIC) using the Hitachi HT-7700 Biological S/TEM Micro-

scope and the Galtan Orius 4k x 2.67k digital camera.

For samples that were exchanged into solvent to prevent collapsing, samples were first fixed

as described above in 2% glutaraldehyde. The samples were exchanged into 30% (v/v) ethanol

for 1 minute, then 50% (v/v), 70% (v/v), and 90% (v/v) ethanol, followed by 100% ethanol

three times. After this exchange into ethanol, samples were exchanged into 50% (v/v) and then

100% hexamethyldisilazane (HMDS). Samples exchanged into 100% HMDS were stained with

UA as described above.

Scanning electron microscopy

Samples were spotted and fixed onto 400 mesh Formvar-coated copper grids (EMS Cat#

FF400-Cu) and processed through a 100% ethanol exchange as described above. Grids were
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placed into a sample holder and loaded into a Tousimis critical point dryer. The critical point

dryer was run for a 10-minute purge cycle. Grids were mounted onto SEM stubs with carbon

tape and coated with 6 nm of gold/palladium in a Cressington 208H sputter coater. Grids were

imaged using a Hitachi SEM with 2 kV accelerating voltage and a 4 mm working distance.

Cryo transmission electron microscopy

Lacey Carbon 200 mesh Cu grids (EMS Cat# LC200-CU) were glow discharged in a Pelco easi-

Glow glow discharger for 30 seconds at 30 mA. 4 μL of sample solution was carefully pipetted

onto the grids and plunge frozen in liquid ethane in a FEI Vitrobot Mark III with a blotting

time of 5 seconds and blot offset of 0.5 mm. Grids were stored in liquid nitrogen and loaded

into a Gatan 626.6 Cryo Transfer Holder cooled down to -170˚C prior to observation in a

JEOL JEM-1230 LaB6 emission TEM running at 100 kV. Images were collected with a Gatan

Orius SC1000 CCD Camera, Model 831.

Transmission electron microscopy of ultra-thin sections

Samples were pelleted at 21,000 x G in an Eppendorf 5424 microcentrifuge for 10 minutes. Pel-

leted samples were fixed with 2.5% (v/v) glutaraldehyde and 2% (v/v) paraformaldehyde in

0.1M PBS, post-fixed with 1% (w/v) OsO4 and 1% (w/v) UA, dehydrated in a graded series of

ethanol, infiltrated with EMBed 812 epoxy resin, and embedded in beam capsules. The embed-

ded samples were polymerized at 60˚C for 48 hours prior to ultra-thin sectioning utilizing a

Leica UC7 ultramicrotome. Sections were collected on 150 mesh Cu grids with a formvar/car-

bon membrane and stained with 3% (w/v) UA in 50% (v/v) methanol and Reynold’s lead cit-

rate to further enhance contrast. The samples were observed in a JEOL JEM-1230 LaB6

emission TEM at 100 kV. Images were collected with a Gatan Orius SC1000 CCD Camera,

Model 831.

Dynamic light scattering measurements

Samples were centrifuged at 12,000 x G for 5 minutes at 4˚C immediately before dynamic light

scattering (DLS) analysis to remove aggregated or insoluble protein. Dynamic light scattering

was performed on a Zetasizer Nano ZS (Malvern Instruments Ltd., UK) with a measurement

angle of 173˚. Measurements were collected in triplicate at 4˚C for 13 scans per measurement.

Refractive index and temperature-adjusted viscosity were obtained from the instrument’s

parameter library.

Nanoparticle tracking analysis was performed on a Nanosight NS300 using a 488 nm (blue)

laser (Malvern Instruments Ltd., UK). Instrument settings were adjusted according to manu-

facturer recommendations. Measurements were collected for a duration of 60 s in 5 runs

using a 1 mL syringe and a syringe pump speed of 30. Measurements were collected at room

temperature.

Image analysis and sizing

Images were contrast-adjusted and cropped using ImageJ [42]. For MCP sizing, images were

scale-corrected based on the instrument used to collect the images. The oval tool was used to

manually trace an ellipse surrounding MCPs. The longest diameter in the ellipse, correspond-

ing to the widest diameter for the MCP, was recorded. Further data analysis was carried out

using Microsoft Excel or R. A single-factor ANOVA was performed to determine if popula-

tions were significantly different. Two-tailed t-tests were used to determine significance of dif-

ferences between specific populations.
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Results and discussion

Negative-stain TEM of purified MCPs yields MCPs that appear deflated

Imaging MCPs using negative-stain transmission electron microscopy (TEM) is a standard

technique used by the MCP field that has been widely adopted since Sinha and colleagues first

described a method for MCP purification [40]. This technique enables clear identification of

the border of each MCP, facilitating descriptions of shape and morphology (Table 1). Addi-

tionally, these results are generally higher contrast than techniques that involve imaging

unpurified MCPs, such as TEM of ultra-thin cell sections.

A drawback to the negative-stain TEM technique is that it requires sample dehydration as

part of the sample preparation process. This ultimately leads to MCP collapse or deflation, as

indicated in Fig 1A. Dark staining is present at the MCP interior, indicating that the stain is

Table 1. Comparison of different techniques used for MCP analysis.

Method Strengths Weaknesses Specialized

Equipment

Previous Works

Transmission Electron

Microscopy (TEM)

•Relatively simple

instrumentation, compared to

other techniques

•Sample preparation is fast and

straightforward

•Easy to see surface and shape

morphology

•History of use in the field

•Compartments appear collapsed due to sample

preparation methods

•Size analysis is slow compared to DLS, etc.

•Glow Discharge

System

•Transmission

Electron Microscope

[21,23–25,31,33,38,41,43–54]

Ultra-thin section

Transmission Election

Microscopy (TEM)

•Can visualize compartments

in native context (does not

require purification)

•History of use in the field

•Relatively slow and difficult sample preparation,

requiring multiple pieces of specialized equipment

•Cannot readily visualize surface morphology

•In vivo images are difficult to analyze due to

other cellular components

•Due to the irregular shape of compartments, size

determination using this method yields a wide

distribution of apparent compartment diameters,

skewing results

•Ultramicrotome

•Transmission

Electron Microscope

[8,16,17,20,23,25,31,34–

37,41,43–46,52,55–57]

Scanning Electron

Microscopy (SEM)

•Compartments appear more

true-to-size (less collapsed)

•Can visualize surface and

shape morphology

•Compartments appear slightly collapsed

•Staining with a metal coat can hide surface

morphologies and alter apparent size

•Sample preparation and imaging is relatively

complex and requires multiple pieces of

specialized equipment

•Glow Discharge

System

•Critical Point Dryer

•Sputter Coater

•Scanning Electron

Microscope

Transmission Electron

Cryo-microscopy (Cryo

TEM)

•Compartments retain solution

size, shape, and morphology

the best

•Sample preparation and imaging is difficult

•Contrast is low due to lack of staining

•Glow Discharge

System

•Plunge freezer

•Cryo transfer holder

•Transmission

electron microscope

[22,58]

Dynamic Light

Scattering (DLS), etc.

•The most rapid, high-

throughput method for

determining the size

distribution

of a population of

compartments

•Does not provide information on morphology •DLS, Zeta Sizer,

other system

[41,48,52]

Table 1 lists the various techniques, along with their strengths and weakness, that are utilized in the MCP field and are assessed in this work. We have also included a

brief list of specialized equipment necessary for each technique, and a list of previous works in the MCP field in which each technique was used. Our hope is that this

will enable selection of the technique best-suited for each study.

https://doi.org/10.1371/journal.pone.0226395.t001

PLOS ONE Variable size of bacterial microcompartments

PLOS ONE | https://doi.org/10.1371/journal.pone.0226395 March 9, 2020 5 / 17

https://doi.org/10.1371/journal.pone.0226395.t001
https://doi.org/10.1371/journal.pone.0226395


pooling in the collapsed, cup-shaped MCPs. To avoid this, fixing with glutaraldehyde is often

used, but does not seem to completely prevent MCP collapse. MCPs appeared to be 102 ± 17

nm (mean ± standard deviation) in diameter when measured in images generated with this

method (Fig 2).

We attempted a number of alterations to the standard sample preparation technique to

reduce MCP collapse. This included critical point drying and sample buffer exchange from the

aqueous sample buffer into a high vapor-pressure solvent. These methods improved MCP

structure retention, especially in samples that were exchanged into the high vapor-pressure

solvent hexamethyldisilazane (HMDS) (Fig 1B). Overall this sample preparation technique

increased the average apparent diameter of the MCPs by 22% to 124 ± 17 nm and required

minimal additional steps (less than an hour of additional preparation time, even with multiple

samples) (Fig 2). However, the exchange into HMDS led to inconsistent staining across the

sample grid. This is likely due to the minimal miscibility of HMDS and the aqueous UA stain.

In spite of these inconsistencies, this technique may be useful when attempting to estimate the

approximate diameter of engineered MCPs using negative-stain TEM.

Fig 1. TEM of purified MCPs. (A) Schematic representation and transmission electron micrograph of negatively stained purified MCPs. Note that MCPs

appear collapsed as evidenced by the pooled stain near the center of MCPs. (B) Schematic representation and transmission electron micrograph of negatively

stained purified MCPs that were first dehydrated in ethanol and a high vapor-pressure solvent (HMDS). Note that MCPs appear less collapsed than in (A).

Scale bar (white) is 100 nm.

https://doi.org/10.1371/journal.pone.0226395.g001
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Critical point drying and scanning electron microscopy reduces apparent

MCP collapse

A technique that has not been widely adopted in the MCP field is scanning electron micros-

copy (SEM) (Table 1). This technique utilizes critical point drying to retain the structure of

imaged samples. This is followed by treating with a sputter coater, which coats the sample in a

thin layer of metal. In contrast to negative-stain TEM sample preparation, this method does

not utilize an aqueous stain. For this reason, we hypothesized that critical point drying and

SEM would lead to MCPs that appeared more inflated. Indeed, MCPs that were subjected to

this sample preparation and imaging workflow did appear slightly more inflated than either of

the negative-stain TEM methods described above (Fig 3). Coating for SEM also allows for tun-

ing of the coat thickness, though there is an upper limit as increasing the metal coating thick-

ness hindered detection of surface morphology (Fig 3B and 3C). For example, in Fig 3B, a coat

thickness of>6 nm was used and occluded some morphological features visible in Fig 3C,

which had a coat thickness of 6 nm. For this reason, we recommend using a minimal coat

thickness (6 nm) (Fig 3C), although finding a balance between optimal coat thickness, acceler-

ating voltage, and scan speed will be necessary for each case. Overall, this technique yielded

Fig 2. Apparent size of MCPs analyzed with different imaging techniques. Box-and-whisker plot of the size distribution of MCPs analyzed with various techniques.

Note that apparent size and distribution varies widely with each technique. A single-factor ANOVA test revealed that populations differed significantly (p< 0.001). The

only populations that are not significantly different (as defined by a p-value greater than .001 in a two-tailed t-test) are TEM of purified MCPs vs thin section TEM and

SEM of purified MCPs vs TEM of dehydrated samples (p = .12 and .26, respectively). N = 300 for all, where 100 measurements were made for each of three biological

replicates (three different MCP growths and purifications). Abbreviations: transmission electron microscopy (TEM), transmission electron microscopy with samples

dehydrated in hexamethyldisilazane (TEM + HMDS), scanning electron microscopy (SEM), cryo transmission electron microscopy (Cryo TEM), ultra-thin section

transmission electron microscopy (UTS TEM).

https://doi.org/10.1371/journal.pone.0226395.g002
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MCPs that appeared 24% (126 ± 17 nm diameter) larger, on average, than the standard nega-

tive-stain TEM method widely adopted by the field and allowed for visualization of MCP sur-

face morphology comparable to the detail seen with negative-stain TEM (Fig 2). However, the

additional sample preparation steps and specialized equipment may make this technique less

appealing for many applications. Specifically, SEM sample preparation and imaging time per

sample were approximately double that of TEM.

Cryo transmission electron microscopy maintains inflated MCPs

Recently, cryogenic transmission electron microscopy (cryo TEM) was used to determine the

structure of an intact MCP from Haliangium ochraceum [58]. This MCP is unique in that it is

relatively small (6.5 MDa, as opposed to the 600 MDa Pdu MCP), regular in shape, lacks

natively-encapsulated enzyme cargo, and was reconstructed heterologously [58,59]. We

hypothesized that because cryo TEM keeps the sample in vitreous ice and does not remove the

sample from its native buffer, it would be best suited for retaining fully-inflated MCPs in their

native shape and diameter (Fig 4). Indeed, samples that were imaged using cryo TEM pro-

duced images that on average appeared the largest of any of the techniques we attempted

(138 ± 21 nm diameter). These MCPs appeared 35% larger in diameter than the standard nega-

tive-stain TEM technique and 10% larger than SEM. Samples imaged using cryo TEM also had

similar variation in size observed by the other techniques, indicating that the higher average

size is not due to large outliers (Fig 2). Indeed, cryo TEM had the second fewest outliers of any

of the imaging techniques we used to assess the population size distribution.

While cryo TEM retained inflated MCPs, the lack of any contrast agent makes visualizing

surface features nearly impossible. Additionally, the initial technical training for sample prepa-

ration and imaging using cryo TEM is challenging. However, an experienced microscopist can

acquire cryo TEM data routinely in a single day. By contrast, chemical processing for TEM of

ultra-thin sections can take several days and includes extra steps such as ultramicrotomy.

Therefore, since this technique retains the native, uncollapsed state of MCPs, labs may choose

to use this technique if a study is primarily focused on a change in MCP size or shape, espe-

cially on a limited number of samples (Table 1).

Ultra-thin section transmission electron microscopy yields large variation

in apparent size

Besides negative-stain TEM of purified MCPs, the technique most widely used in the field is

TEM of ultra-thin sections. This technique has been used both on purified MCPs as well as

Fig 3. SEM of purified MCPs. (A) Schematic representation of MCPs imaged by SEM. (B) SEM of MCPs with>6 nm of gold staining. (C) SEM of MCPs with the

minimal 6 nm gold coat thickness. Note that MCPs appear more inflated than in Fig 1A and surface features are apparent. Scale bars (white) are 100 nm.

https://doi.org/10.1371/journal.pone.0226395.g003
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MCPs in cells. In the earliest studies in the field, this technique was the only available option

for visualizing MCPs, as a purification method was not published until relatively recently (car-

boxysomes were discovered in 1956 but the method for Pdu MCP purification was not pub-

lished until 2012) [7,40]. This allowed for visualization of MCPs within their native context

and provided researchers with a means to determine if genetic manipulations altered the

expression, size, shape, and cytoplasmic distribution of MCPs.

However, TEM of ultra-thin sections has a number of drawbacks that make it a suboptimal

choice for many applications. Ultra-thin sections produce highly variable apparent diameters

(99 ± 32 nm) likely because Pdu MCPs are irregular in shape and because measured MCP

diameter depends where the MCP is sectioned (Fig 5). We illustrate the impact of this second

point by assuming a spherical MCP with volume Vsphere. We can calculate the average diame-

ter measured, Dmeasured, by ultra-thin sectioning using the following equation

Dmeasured ¼
1

Vsphere

Z

V
dðrÞdV

where d(r) is the diameter of a spherical cross-section taken at an arbitrary radius, r, from the

center of the sphere (S2 Fig). Evaluating this integral over the entire sphere volume (see S2

File), we find that the average diameter measured by ultra-thin sectioning of a sphere is related

to the actual sphere diameter, Dactual by the equation

Dmeasured ¼
3p

16
Dactual

Fig 4. Cryo TEM of purified MCPs. (A) Schematic representation of cryo TEM of MCPs. Note that MCPs retain their native shape and are frozen in a layer of vitreous

ice. (B) Micrographs of purified MCPs visualized using cryo TEM. Scale bars (white) are 100 nm.

https://doi.org/10.1371/journal.pone.0226395.g004
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Thus, even if the MCPs were perfectly spherical, we expect that TEM of ultra-thin sections

would underestimate the true diameter by approximately 41%. This underestimation, com-

pounded with the irregular shape of actual Pdu MCPs, likely leads to the high variability we

observed in MCP diameter measured by TEM of ultra-thin sections. Using this technique, we

found the largest variation in apparent MCP diameter, with measurements both much larger

and much smaller than all previous techniques (Fig 5). Indeed, MCPs appeared on average

28% smaller in diameter than with cryo TEM, and the variation was between 1.5 and 1.9 times

greater than all other methods (Fig 2). While the observed 28% underestimation is less than

the mathematically predicated 41% underestimation, we attribute this to difficulty in identify-

ing the smallest MCP sections during image analysis. Qualitatively, MCPs visualized using

TEM of ultra-thin sections appeared more rounded and less angular than with other tech-

niques. However, this is not always the case across the field, as other labs have used this tech-

nique to produce MCP images that appear to retain their native angularity [8].

Additionally, preparation of ultra-thin sections is a challenging technique to master, and it

can be difficult to determine the true boundaries of MCPs when they are visualized within

cells. Due to these many drawbacks, we recommend only using TEM of ultra-thin sections

when it is necessary to view MCPs in their native context in the cytoplasm or when it is neces-

sary to image the interior of MCPs (Table 1).

Dynamic light scattering and nanoparticle tracking analysis enables

higher-throughput MCP sizing

While microscopy allows researchers to visualize the morphology of MCPs, this may not be

necessary for all studies. These imaging techniques are relatively low-throughput, and size

determination is slow. One higher-throughput option for MCP sizing is particle sizing via

dynamic light scattering (DLS). In this study we compared two different DLS-based tech-

niques—Nanosight for nanoparticle tracking analysis (NTA), and Zeta Sizer for population-

Fig 5. TEM of ultra-thin sections of purified MCPs. (A) Schematic representation of an MCP undergoing ultra-thin sectioning. Note that due to the irregular shape of

MCPs, thin sectioning will lead to a wide range of apparent diameters. (B) Micrographs of purified and ultra-thin sectioned MCPs. Scale bar (white) is 250 nm.

https://doi.org/10.1371/journal.pone.0226395.g005
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based size measurements. Sizing analyses were performed on MCPs in solution (Fig 6), and

particle size distributions (PSDs) were acquired (Fig 6A and 6B). When analyzed via Nano-

sight, the resulting distribution peak reached a maximum at 132 nm (Fig 6A). When analyzed

via Zeta Sizer, the calculated distribution reached an intensity maximum at 122 nm (Fig 6B).

Generally, the particle size distribution peak obtained via Nanosight was narrower than in the

Zeta Sizer analysis. The average diameter measured by NTA was 149.5 ± 0.7 nm, which was

larger than the 122.04 ± 0.5 nm measured by the Zeta Sizer (Fig 6C). The disparity in mean

diameter comes from large aggregates observed in the NTA experiment (S3 Fig). To directly

compare the sizing of Nanosight and Zeta Sizer, we consider differences between the mode

diameter of Nanosight and the mean diameter (Zave) of the Zeta Sizer to be the most accurate

comparison. The mode diameter of 130.7 ± 1.0 nm is slightly higher than the measured

122.04 ± 0.5 nm observed in Zeta Sizer measurements. Finally, the polydispersity index (PDI),

a metric of the broadness of the measured size distribution, calculated via Zeta Sizer was

0.045 ± 0.001. PDI, calculated directly from the DLS correlation data, is dimensionless and

scaled such that a value of ~0.05 represents a highly monodisperse sample. We attribute dis-

crepancies in diameter measurements to differences between the measurement techniques and

their respective calculations of particle diameter. The full experiment report obtained for NTA

measurements is shown in S3 Fig.

To further assess the stability of DLS sizing measurements over an order of magnitude of

concentrations of MCPs, we compared size measurements at 50 μg/mL and 500 μg/mL MCPs

Fig 6. Higher-throughput sizing of purified MCPs using DLS. Sizing MCPs in solution via light scattering techniques. (A) Particle size

distributions measured via Nanosight, and (B) Zeta Sizer. (C) Comparison of average diameters measured via NTA and DLS. Error bars represent

the standard deviation of the three measured samples.

https://doi.org/10.1371/journal.pone.0226395.g006
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using Zeta Sizer (S4 Fig). Importantly, the raw correlation data obtained at 50 μg/mL and

500 μg/mL were in good agreement; the resulting Zave values calculated were 121.1 ± 0.32 nm

and 122.0 ± 0.51 nm, respectively (S4 Fig). Polydispersity indices obtained for MCPs at 50 μg/

mL and 500 μg/mL were 0.069 ± 0.001 and 0.045 ± 0.001, respectively, indicating a high degree

of uniformity of MCPs (S4 Fig). Full intensity, number, and volume PSDs for DLS measure-

ments are presented in S4 Fig. As expected, we observed similar PSDs for measurements col-

lected at 50 μg/mL and 500 μg/mL MCPs. Intensity PSDs displayed maximum intensities at

~122 nm. Number and volume PSDs displayed maxima near ~90 nm, and were left-shifted

with respect to the intensity PSDs. Slight shifting of the PSDs between intensity, number, and

volume distributions is attributable to differences in the treatment of correlation data, with the

intensity PSD representing the actual particle size most accurately. The consistency and stabil-

ity of DLS measurements over an order of magnitude of concentration indicate that Zeta Sizer

is a suitable technique for analysis of MCPs over a range of concentrations. Notably, the diam-

eters obtained by Zeta Sizer appear more similar to the results obtained by SEM or TEM sam-

ples treated with HMDS but are 12–13% smaller than MCPs observed by cryo TEM. However,

Nanosight results appeared most similar to those obtained by cryo TEM (132 nm vs. 138 nm).

Conclusion

Our results suggest that the technique used to visualize and measure MCPs can alter how we

interpret our experimental results. This is especially important when comparing results across

studies which used different techniques to assess their results. Our hope is that this study can

provide a guideline for the appropriate use of each of the many available techniques used in

the field to assess MCPs (Table 1). Specifically, TEM of purified MCPs is most appropriate for

rapidly checking MCP shape and morphology. For more in-depth analyses of the size and

morphology of MCPs, cryo-EM, SEM, or a modified form of TEM that dehydrates the sample

in a high vapor-pressure solvent may be appropriate. If researchers are primarily interested in

the size distribution of a population of MCPs, DLS can be used to quickly provide insight.

TEM of ultra-thin sections is most appropriate in situations which the in vivo MCP distribu-

tion or morphology are under investigation. Our results can be used to contextualize and com-

pare results across different studies by providing approximate percent changes in apparent size

for each technique.

Supporting information

S1 Table. Reported sizes of MCPs. The reported size range for MCPs, the work in which the

size was reported, the system being analyzed (Propanediol utilization (Pdu), Ethanolamine uti-

lization (Eut), Carboxysome (Carb)), and the technique used for the analysis (TEM of ultra-

thin sections (TEM UTS), TEM of purified MCPs (TEM Pur)).

(TIF)

S1 Fig. Coomassie-stained gel of three biological replicates used for EM images. Lanes: (i)

molecular weight standard, (ii-iv) replicates of purified Pdu MCPs.

(TIF)

S2 Fig. Diagram of a sectioned sphere. Diagram showing the parameters used in the calcula-

tion of the average diameter by ultra-thin sectioning. Dactual is the true diameter of the sphere,

r is the variable describing the distance from the center of the sphere, θ is the azimuthal angle,

F is the zenith angle, and d(r) is the diameter of an arbitrary circular slice in the sphere at dis-

tance r from the center.

(TIF)
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S3 Fig. Full Nanosight/NTA analysis report used in this study.

(TIF)

S4 Fig. DLS analysis of MCPs at 50 μg/mL and 500 μg/mL. Raw correlation data (A), calcu-

lated Zave (B), and polydispersity indices (PDI) (C) of MCPs. Intensity (D), number (E), vol-

ume (F) particle size distributions of MCPs.

(TIF)

S1 File. Raw sizing data from images.

(CSV)

S2 File. Calculation of average measured diameter of a sphere.

(PDF)

S3 File. Raw sizing data from Zeta Sizer.

(XLSX)

S4 File. Raw sizing data from Nanosight.

(XLSX)

S5 File. Raw, uncropped SDS-PAGE gels of purified MCP samples.

(PDF)
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