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ScienceDirect
The translation system is the cell’s factory for protein

biosynthesis, stitching together hundreds to thousands of

amino acids into proteins, which are required for the structure,

function, and regulation of living systems. The extraordinary

synthetic capability of this system, which includes the ribosome

and its associated factors required for polymerization, has

driven extensive efforts to harness it for societal use in areas as

diverse as energy, materials, and medicine. A powerful

example is recombinant protein production, which has

impacted the lives of patients through the synthesis of

biopharmaceuticals such as insulin. In nature, however, only

limited sets of monomers are utilized, thereby resulting in

limited sets of biopolymers (i.e., proteins). Expanding nature’s

repertoire of ribosomal monomers could yield new classes of

enzymes, therapeutics, materials, and chemicals with diverse,

genetically encoded chemistry. Here, we discuss recent

progress towards engineering ribosomes both in vivo and in

vitro. These fundamental and technical breakthroughs open

doors for advanced applications in biotechnology and

synthetic biology.
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Introduction
The translation apparatus is the cell’s factory for protein

biosynthesis, stitching together L-a-amino acid substrates

into sequence-defined polymers (i.e., proteins) according

to a defined genetic template. With protein synthesis

rates of up to 20 amino acids per second at an accuracy

of 99.99% [1,2], the extraordinary catalytic capacity of the

translation apparatus has attracted extensive efforts to

repurpose it for novel functions [3–6]. Previous
www.sciencedirect.com 
pioneering works have shown site-specific incorporation

of more than 150 non-canonical amino acids (ncAAs) into

proteins using an engineered translation apparatus to

generate biological insights and new applications [3–5].

As a result of these impressive efforts, expanding the

genetic code has emerged as a major opportunity in

synthetic and chemical biology [7–10].

Unfortunately, expanding the range of genetically

encoded chemistry into proteins presents a complex

and formidable challenge for several reasons [3]. First,

the components of engineered orthogonal translation

systems that specifically utilize ncAAs suffer poor enzy-

matic efficiencies relative to native translational machin-

ery [3]. Second, the focus of most engineering efforts

remains on evolving orthogonal translation system com-

ponents by targeting only a small number of individual

parts, rather than coordinately tuning and optimizing all

biological components involved in the complex system of

protein biosynthesis [11��]. Third, certain biological con-

straints — especially that of the ribosome, the protein

polymerase core of the translation apparatus — limit the

scope of ncAA diversity. Because ribosome function is

necessary for life, cell viability restricts the changes that

can be made to ribosomes for expanding the range of

substrates beyond those found in nature.

This review focuses on recent developments in repurpos-

ing the translation system for novel functions, with a focus

on engineering the bacterial Escherichia coli ribosome

(Figure 1). We first describe the state-of-the-art in the

ribosome’s ability to process ncAAs. Next, we highlight

recent progress towards engineering ribosomes both in
vivo and in vitro. We end with a discussion of current

challenges in the field and provide commentary on future

opportunities.

Repurposing ribosomes
The E. coli 70S ribosome is a �2.4 MDa macromolecular

machine made up of two subunits, the 50S large subunit,

comprised of 33 ribosomal proteins (r-proteins), 23S ribo-

somal RNA (rRNA), and 5S rRNA, and the 30S small

subunit, comprised of 21 r-proteins and 16S rRNA [12].

The 16S rRNA of the 30S subunit accommodates ribo-

somal monomers, aminoacyl-transfer RNAs (aminoacyl-

tRNAs), and decodes mRNA. The 23S rRNA of the 50S

subunit primarily makes up the peptidyl transferase cen-

ter, which catalyzes the polymerization of amino acids

into proteins via peptide bonds, and the nascent peptide

exit tunnel, through which newly synthesized proteins

leave the ribosome. Previous works have shown the

possibility of using natural ribosomes to site-specifically
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Figure 1

Engineering the translation apparatus to manufacture sequence-defined polymers. Expanding the repertoire of ribosome substrates and functions

has the potential to not only create novel biopolymers, but also open new areas of research in materials science and synthetic biology.
incorporate ncAAs into polypeptides, including

a,a-disubstituted amino acids, D-amino acids, b-amino

acids, N-alkyl amino acids, and N-methyl amino acids

[13–16,17�,18–20,21�,22�]. Since sequence defines struc-

ture and structure defines function, expanding the reper-

toire of ribosome substrates and functions has the poten-

tial to create polymers with even greater functional

breadth. For example, the ribosome has been shown to

be capable of producing polymers with non-peptide back-

bones such as polyesters. Over forty years ago, Fahren-

stock and colleagues first demonstrated that the ribosome

polymerizes phenyllactic acid in a template-directed

manner [23]. More recently, Suga and colleagues synthe-

sized polyesters up to �10 units long containing up to

three different side chains by genetic code reprogram-

ming [24�,25].

Despite these advances, engineering the translation

machinery can be hampered by low efficiencies of the

ribosome to accept non-proteinogenic building blocks.

The structural, physiochemical, and dynamic properties

of the ribosome have been evolutionarily optimized to

translate native proteins from the 20 canonical amino

acids. To address this concern, the ribosome can be

manipulated through directed evolution to accommodate

non-canonical monomers, although there are relatively

few examples. Hecht and colleagues evolved the peptidyl

transferase center to enable exotic monomer incorpo-

ration, such as D-amino acids [26,27�] and b-amino acids

[18,19]. More recently, Czekster and colleagues gener-

ated additional ribosome mutations to show, for the first

time, the ability to incorporate these exotic monomers in

a living cell [28�]. Even with site-directed evolution of the

ribosome, efficiencies can be low. How might the effi-

ciencies and utilities of engineered ribosomes be

improved? There are some recent indications that modi-

fying non-ribosomal factors involved in translation can
Current Opinion in Chemical Biology 2017, 40:87–94 
also lead to improved non-canonical monomer incorpo-

ration. For example, Suga and colleagues recently showed

that modifying the concentrations of translation factors (e.

g., Initiation Factor 2, Elongation Factor Tu, and Elon-

gation Factor G) and using tightly binding elongator

tRNAs can enhance multi-site incorporation of D-amino

acids for the synthesis of novel macrocyclic peptides

[21�]. Similarly, Huang et al. demonstrated that multiple

D-amino acid incorporation could be enabled by using

Elongation Factor P to resolve peptidyl transferase stal-

ling (biorxiv.org/content/early/2017/04/10/125930).

Although the ribosome can feasibly accept non-canonical

building blocks and be tolerant of modifications that

enable increased promiscuity, constraints imposed by

living cells have hindered efforts to engineer ribosomes

effectively. In particular, dominant growth defects caused

by mutations in the ribosome can preclude identification

of mutants that confer desired functions [29,30]. This has

motivated the need to develop new technology platforms

for engineering ribosomes both in vivo and in vitro, which

we describe next.

Engineering ribosomes in vivo
Expanding the decoding and catalytic capabilities of the

ribosome is often at the expense of diminishing its

endogenous function in protein synthesis. To bypass this

limitation, recent developments in cells have focused on

the creation of specialized ribosome systems. The con-

cept is to create an independent, or orthogonal, translation

system within the cell while wild-type ribosomes con-

tinue to synthesize genome-encoded proteins to ensure

cell viability and productivity. The orthogonal ribosome

is thus excluded from the production of endogenous

polypeptides and, ideally, exclusively translates specific,

targeted mRNA(s). Therefore, the orthogonal translation

apparatus can be engineered to carry out new functions,
www.sciencedirect.com
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even if such modifications may negatively affect the

operation of the orthogonal ribosome in normal transla-

tion. The principle of orthogonality is achieved through

the bacterial small ribosomal subunit. Recognition of the

start codon in bacteria relies on complementary interac-

tions between the purine-rich Shine-Dalgarno (SD)

region, which precedes the initiator codons of bacterial

open reading frames, and the pyrimidine-rich ‘anti-SD’

(aSD) sequence at the 30-end of the 16S rRNA in the 30S

subunit [31]. Thus, by modifying the SD sequence of an

mRNA and the corresponding aSD sequence in 16S

rRNA, it is possible to create specialized ribosomes capa-

ble of translating only a specific kind of engineered

mRNAs, while simultaneously excluding translation of

endogenous cellular mRNAs (Figure 2a). Initially, the

concept of orthogonal ribosomes was pioneered by Hui

and deBoer [32–34], and then was extended and improved

in several ways by Chin and colleagues. Rackham and

Chin, for example, generated random mutagenesis librar-

ies of possible 16S rRNA and mRNA pairs with comple-

mentary SD/aSD sequences, then selected for pairs that

can robustly and exclusively translate orthogonal message

without crosstalk with native translation processes [35��].
Chubiz and Rao developed a computational model to
Figure 2

Approaches to orthogonal ribosomes. (a) 30S orthogonality. 30S subunits (o

modified to bind only to RNA messages (o-mRNA) with the complementary

orthogonal and parallel to the native translation process (gray). However, th

o-30S. (b) A fully orthogonal 70S. 50S and 30S subunits are connected by 

species.

www.sciencedirect.com 
rationally design orthogonal SD/aSD sequences in order

to explore a larger mutational space, with similar results as

they discovered several orthogonal 16S and mRNA pairs

without toxicity effects on the host strain [36].

Leveraging these advances, orthogonal 30S subunits have

been engineered to preferentially bind to the amber

suppressor tRNA over RF-1 to improve ncAA incorpo-

ration efficiency [37], select for opal suppressor tRNA

over RF-2 [38], decode quadruplet codons towards

genetic code expansion [39��], and enable orthogonal

transcription-translation networks [40]. These innova-

tions have enabled the creation of engineered ribosomes

with altered substrate preferences in vivo. However, until

two years ago, such techniques have been limited to the

30S small subunit because 50S large subunits freely

exchange between pools of native and orthogonal 30S

subunits. This has previously constrained the engineering

potential of the large subunit, which includes functionally

important domains such as the peptidyl transferase center

and the exit tunnel.

Recently, the covalent linking of the core ribosomal RNA

of the large and small subunits of the orthogonal ribosome
-30S), with the anti-Shine-Dalgarno (aSD) sequence of its 16S rRNA

 Shine-Dalgarno (SD) sequence, translate proteins (o-protein)

e 50S subunit is allowed to freely associate between native 30S and

an RNA tether, preventing free association of native and orthogonal

Current Opinion in Chemical Biology 2017, 40:87–94



90 Synthetic biology
has enabled the first completely orthogonal ribosome-

mRNA system where mRNA decoding, catalysis of poly-

peptide synthesis, and protein excretion can all be opti-

mized for new substrates and functions [41��,42�,43].
Orelle and colleagues described the first successful con-

struction of a ribosome with covalently tethered subunits,

termed Ribo-T, capable of carrying out protein synthesis

(Figure 2b) [41��]. Specifically, they engineered a ribo-

some whose core 16S and 23S rRNAs form a single

chimeric molecule with a covalent connection between

the 23S rRNA termini within the loop of helix 101 (H101)

and the apex loop of the 16S rRNA helix 44 (h44). Not

only could this hybrid rRNA support the assembly of a

functional ribosome in a cell, but surprisingly Ribo-T

could also maintain bacterial growth even in the absence

of wild-type ribosomes. Orelle and colleagues also used

Ribo-T to create a fully orthogonal ribosome–mRNA

system [41��]. They demonstrated its evolvability by

selecting otherwise dominantly lethal rRNA mutations

in the peptidyl transferase center that facilitated the

translation of problematic protein sequences. Fried and

colleagues also demonstrated a linked ribosome design

capable of sequestering dominant lethal mutations in a

fully orthogonal ribosome using a different set of linkers,

or ‘staples’ [42�]. Collectively, these findings uncover new

directions in biomolecular engineering and synthetic

biology. Looking forward, tethered ribosomes can be

used for exploring poorly understood functions of the

ribosome (e.g., antibiotic resistance mechanisms),

enabling orthogonal genetic systems, and engineering

ribosomes with altered chemical properties. Future chal-

lenges include resource re-allocation of the cell’s transla-

tional capacity and shared ribosomal protein pool, as well

as optimizing the expression levels of tethered ribosomes

in the background of high concentrations of endogenous

ribosomes.

Engineering ribosomes in vitro
As a complement to engineering ribosomes in vivo, in
vitro approaches offer potential advantages to precisely

control the reaction environment in a manner that may

allow for the isolation of certain mutant ribosomes not

possible in cells, such as those in non-physiological pH,

temperature, and redox levels. In vitro translation sys-

tems, both reconstituted from purified parts or from crude

cell lysates, have shown promise for applications stem-

ming from recent advances that alleviate possible ribo-

somal limitations and increase yields [44–47]. In vitro
reconstitution of E. coli ribosomes from their individual

components was first achieved over 40 years ago [48,49].

Despite relatively efficient reconstitution with natural

components, the use of in vitro transcribed rRNA, which

lack naturally occurring post-transcriptional modifica-

tions, is less efficient than in vivo transcribed versions

[50,51]. This is a particular concern for the E. coli 50S

subunit, where peptidyl transferase activity from recon-

stituted 50S subunits using in vitro transcribed 23S rRNA
Current Opinion in Chemical Biology 2017, 40:87–94 
is diminished �10,000-fold relative to those with natu-

rally derived 23S rRNA. Low reconstitution efficiencies

from in vitro transcribed rRNA have represented one of

the most significant bottlenecks to in vitro ribosome

engineering.

Several efforts are underway to move beyond previous

limitations. One method is to leverage purified translation

systems, such as the PURE system with no endogenous

ribosomes, to build new ribosomes in ways similar to

strategies used in cells [52–54]. In a key milestone this

year, Li and colleagues showed that ribosomal proteins

generated in vitro could be used alongside in vitro tran-

scribed rRNA to build a functional small ribosomal sub-

unit [54]. In another approach, Jewett et al. developed an

integrated synthesis, assembly, and translation method,

termed iSAT, that enabled efficient one-step co-activa-

tion of rRNA transcription, assembly of transcribed rRNA

with native ribosomal proteins into E. coli ribosomes, and

ribosomal synthesis of functional proteins in a ribosome-

free S150 extract [55] (Figure 3). Notably, iSAT mimics

co-transcription of rRNA and ribosome assembly as it

occurs in cells.

The iSAT system’s utility was improved over the past

four years, where the activity of iSAT was increased by

more than three orders of magnitude through optimiza-

tion of extract preparation methods, rRNA transcription

turning, substrate limitation alleviations, and the use of

macromolecular crowding and reducing agents [55–58]. In

one instance, Fritz and Jewett increased transcriptional

efficiency through 30-modifications in rRNA gene

sequences, optimized plasmid and polymerase concen-

trations, and demonstrated the use of a T7-transcribed

rRNA operon for stoichiometrically balanced rRNA syn-

thesis and native rRNA processing [56]. These modifica-

tions produced a 45-fold improvement in iSAT protein

synthesis activity. In another advancement, Liu and

colleagues determined substrate depletion and toxic

byproduct accumulation to be causes of reaction termi-

nation in iSAT, and alleviated these constraints using a

semi-continuous reaction format [57]. Another study

demonstrated that macromolecular crowding and reduc-

ing agents (6%, w/v, Ficoll 400, and 2 mM DTBA) yielded

approximately a five-fold increase in overall iSAT protein

synthesis activity [58]. By utilizing a fluorescent RNA

aptamer, fluorescent reporter proteins, and ribosome sed-

imentation analysis, Fritz and colleagues showed that

crowding agents increased iSAT yields by enhancing

translation while reducing agents increase rRNA tran-

scription and ribosome assembly [58]. These efforts

demonstrated that iSAT ribosomes possess �70% of

the protein synthesis activity compared to in vivo-assem-

bled E. coli ribosomes, which surpasses an important

benchmark: iSAT ribosomes are now capable of

translating >8,000 peptide bonds per ribosome —

enough peptide bonds for the translation of a complete
www.sciencedirect.com
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Figure 3

Integrated synthesis, assembly, and translation (iSAT) method for ribosome construction in vitro. In cell-free, ribosome-free S150 extract, reporter

mRNA and rRNA are transcribed by RNA polymerase (RNA Pol) and the rRNA assembled into ribosomal subunits with added total r-proteins of

the 70S (TP70). iSAT-assembled ribosomes then translate the reporter, here superfolder green fluorescent protein (sfGFP), as a measure of

ribosome activity.

Figure 4

Adapting the ribosome to unique tRNA pools. 50S subunits (o-50S)

are modified in the 23S rRNA to bind only to orthogonal tRNA (o-

tRNA) with a complementary sequence at the 30 tail. This can result in

two species of protein translated from one RNA message. The 30S

subunit freely associates between the two 50S species.
set of ribosomal proteins [55]. The iSAT system can also

be encapsulated inside giant liposomes in a cell-like

compartment which could facilitate in vitro evolution

[59].

A key feature of the iSAT system is the ability to generate

ribosomal variants by simply changing the DNA input,

which allows for the facile construction of modified ribo-

somes with mutations in any desired domain. For exam-

ple, ribosomes highly resistant to the lincosamide antibi-

otic clindamycin were readily constructed via targeted

mutations in rRNA sequences [55], showcasing the ability

of the iSAT system to generate functional modified

ribosomes. Other approaches have shown the ability to

evolve ribosomes in vitro. To select mutants of 23S rRNA,

which contain the peptidyl transferase center, Cochella

and Green developed a hybrid in vivo/in vitro approach

[29]. Their strategy involved, first, in vivo assembly of

tagged ribosomal mutants with variant 23S rRNAs

(mutant rRNAs that are co-expressed with native rRNAs),

second, isolation of tagged ribosomes by affinity purifica-

tion, and third, in vitro selection of ribosome mutants

using ribosome display. Employing this approach, the

authors isolated functionally competent 23S rRNAs that

were resistant to clindamycin and were not viable in vivo
[29]. While this hybrid strategy enables in vitro selection

of mutant ribosomes based on functional properties that

cannot be accessed in vivo, it suffers from limited diver-

sity resulting from the need to transform a mutant library

of 23S rRNA genes into cells, as well as the challenge of

separating mutant ribosome pools from native ones. This

provides a robust opportunity to use iSAT for evolving

modified ribosomes with altered substrate preferences.

Beyond modifying the active site of the ribosome for

altered catalytic function, mutations elsewhere could

allow the ribosome to use orthogonal tRNAs (Figure 4).
www.sciencedirect.com 
In pioneering work, Terasaka and colleagues demon-

strated that the universally conserved 30-terminal CCA

sequence in tRNA molecules could be changed to CGA

or GGA without loss of function, provided that three
Current Opinion in Chemical Biology 2017, 40:87–94
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residues of the ribosomal peptidyl transferase center (P

site G2251 and G2252, and A site G2553) were altered to

retain base pairing with the tRNA terminus [60��]. To do

this, they first generated synthetic tRNAs [61] bearing

mutations at the 30 end at either one or two sites (C74G

and/or C75G), and found that 30-CGA-tRNA and 30-GGA-

tRNAs were not compatible with wild-type ribosomes

and thereby orthogonal. Ribosomes with 50S subunits

possessing complementary single (G2252C), double

(G2251C and G2253C), and triple (G2251C, G2252C,

and G2253C) mutations in the 23S rRNA were purified

and their activity coupled with and without orthogonal

tRNAs were assessed for translation using a flexible in
vitro translation (FIT) system of purified parts [60��,62].
The authors found that the double mutant ribosome

paired with 30-CGA-tRNA was able to synthesize a sepa-

rate species of peptide bearing an ncAA from a single

mRNA, while wild-type ribosomes translated a peptide

without an ncAA. This advancement suggests the possi-

bility of establishing orthogonal coding channels for the

biosynthesis of novel synthetic polymers capable of incor-

porating multiple ncAAs without crosstalk with canonical

amino acids and the native translation system.

Conclusions
The construction of engineered ribosomes is poised to

enable new opportunities to manufacture synthetic

sequence-defined polymers that span vast structural

and functional diversity, yet remain unattainable through

existing methods in synthetic or biological chemistry.

Despite these opportunities, many challenges remain.

First, the fundamental constraints on the chemistry that

the ribosome’s RNA-based active site can carry out are

unknown. By creating machines of translation that move

beyond nature’s processes and standard monomers,

future work could elucidate a new understanding of

the science of protein synthesis through construction.

Second, the resolution of the crystal structure of the

bacterial ribosome has provided newfound insights into

the functional operation and mechanism of translation.

Yet, repurposing ribosomes with new substrate prefer-

ences will require computational tools, as well as predic-

tive models, to guide any fundamental redesign of the

translation apparatus for new chemical activities. This is

especially challenging given the size and structural com-

plexity of the ribosome. Third, the ribosome is only one

component of the translation apparatus and building

wholly orthogonal translation systems with high specific-

ity and activity for unique non-canonical substrates is

complex, especially given its milieu of moving parts. New

approaches for systematically engineering multiple com-

ponents of the translation machinery (e.g., ribosomes,

tRNAs, aminoacyl-tRNA synthetases, and elongation

factors) concurrently as a cohesive unit, rather than in

isolation, will provide synergistic opportunities to

enhance multi-site incorporation of ncAAs into proteins.
Current Opinion in Chemical Biology 2017, 40:87–94 
Overcoming these challenges will have both short and

long term benefits. In the short term, ribosome repurpos-

ing will deepen our understanding of translation, expand

the genetic code in a unique and transformative way, and

reveal how evolution has guided the structure and func-

tion of the ribosome. In the long term, engineering the

translation apparatus will expand the range of genetically

encoded chemistry in proteins and biopolymers, forging a

broad range of innovative technologies that have the

potential to transform synthetic biology.
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