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Abstract

Glycosylation plays a pivotal role in tuning the folding and
function of proteins. Because most human therapeutic proteins
are glycosylated, understanding and controlling glycosylation
is important for the design, optimization, and manufacture of
biopharmaceuticals. Unfortunately, natural eukaryotic glyco-
sylation pathways are complex and often produce heteroge-
neous glycan patterns, making the production of glycoproteins
with chemically precise and homogeneous glycan structures
difficult. To overcome these limitations, bacterial glycoengin-
eering has emerged as a simple, cost-effective, and scalable
approach to produce designer glycoprotein therapeutics and
vaccines in which the glycan structures are engineered to
reduce heterogeneity and improve biological and biophysical
attributes of the protein. Here, we discuss recent advances in
bacterial cell-based and cell-free glycoengineering that have
enabled the production of biopharmaceutical glycoproteins
with customized glycan structures.
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Introduction
The attachment of complex sugars known as glycans to

the side chains of protein amino acids, a process known
as glycosylation, is a complex and abundant post-
translational modification that occurs in all domains of
life. Glycosylation shapes the functional landscape of
proteins, with over 50% of the human proteome being
glycosylated [1,2]. Glycans are structurally diverse and
have been shown to play essential roles in the biological
and biophysical properties of proteins, such as activity,
stability, immunogenicity, serum half-life, and traf-
ficking [3]. Accordingly, the strategic attachment of
glycans is often used to enhance the therapeutic efficacy

and pharmacological profiles of protein therapeutics and
vaccines [4]. Given the association between distinct
glycan structures and specific biological functions, het-
erogeneous glycosylation can compromise intended
biological activity and evoke immunogenic responses,
emphasizing the importance of homogeneous glycopro-
tein medicines.

The diversity and complexity of glycan structures, with
more than 7000 glycan determinants in the human
glycome, stems from their non-template-based synthe-

sis, which involves the spatial and temporal activity of
enzymes known as glycosyltransferases (GTs). As such,
widely used methods for genetic and protein engineer-
ing have limited applicability. Thus, the development of
tools and platforms for efficient biosynthesis and
modification of structurally diverse glycans on lipids and
proteins is essential to enabling protein glycoengineer-
ing. Glycoengineering therapeutic proteins is achieved
by a variety of approaches, with the ultimate goal of
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achieving site-specific attachment of homogeneous
glycan structures. Mammalian-based expression systems
are the current industry standard for producing thera-
peutic glycoproteins, with over 70% of approved re-
combinant glycoproteins being produced in mammalian
cells such as Chinese hamster ovary (CHO) cells [5].
While strides are being made to improve glycoprotein
expression in mammalian systems, for example, by using

gene-editing technology to precisely tailor glycan
structures [6,7], significant drawbacks such as high
manufacturing costs, heterogeneous product formation,
and contamination risks persist. Amidst rising global
demand for protein biologics, exploring alternative
strategies and production hosts that enable rapid, low-
cost, and distributed biomanufacturing be-
comes imperative.

Bacterial glycoengineering is an emerging area of
research that seeks to harness the genetic tractability of

prokaryotic hosts together with detailed knowledge of
glycosylation pathways and genes across phylogeny for
the creation of novel glycomolecules including glyco-
protein therapeutics and conjugate vaccines (recently
reviewed in Refs. [8e11]). In the earliest demonstration
of this concept more than 20 years ago, the N-linked
protein glycosylation pathway from Campylobacter jejuni
was functionally transferred into Escherichia coli [12],
paving the way for recombinant expression of glycopro-
teins in this simple, genetically tractable, and cost-
effective host organism. Because E. coli cells lack

endogenous glycosylation machinery, they offer a “blank
canvas” for faithfully constructing virtually any glycan
structure on acceptor proteins of interest. Indeed, the
spectrum of glycoconjugates that are possible in E. coli
seems limited only by imagination. On the one hand,
laboratory strains of E. coli have been engineered to
build capsular polysaccharide (CPS) and O-poly-
saccharide (O-PS) antigens from pathogenic bacteria
and transfer these to carrier proteins [13,14], giving rise
to conjugate vaccines that have proven effective in
preventing infectious disease. On the other hand,
human-type N- and O-linked glycosylation pathways

have been assembled in laboratory strains of E. coli,
bestowing these cells with the ability to produce human
glycoproteins [15,16]. In addition to their use as glyco-
protein factories, these glyco-competent E. coli have also
been leveraged as chassis strains for sourcing cell-free
extracts that co-activate N- and O-linked glycosylation
reactions and enable biosynthesis of glycoprotein
outside of living cells [15,17]. Inspired by these initial
reports, a wide array of systems now exists that interface
protein glycosylation with cell-free protein synthesis
(CFPS), which we refer to as cell-free glycoprotein

synthesis (CFGpS; recently reviewed in Refs. [18e20]).
To date, these systems have been used to produce
conjugate vaccines [21e24] and therapeutic glycopro-
teins including human Fc domains [16,25,26], thus
positioning CFGpS technology as an important new
Current Opinion in Chemical Biology 2024, 81:102500
addition to the synthetic glycobiology toolbox for
accelerating expression and biomanufacturing of glyco-
protein products.

In this review, we discuss recent discoveries and ap-
proaches in bacterial glycoengineering that are paving
the way for rapid, homogeneous, and scalable production
of valuable glycoprotein biopharmaceuticals in labora-

tory strains of E. coli and their cell-free extracts, with
particular focus on two major product classes: conjugate
vaccines and monoclonal antibodies (mAbs).

Biosynthesis of conjugate vaccines in
glycoengineered bacterial cells
Conjugate vaccines are among the safest and most
effective methods for preventing disease caused by
bacterial pathogens [27e29] and are a significant
advancement in vaccine technology. Conjugates over-
come the challenge of eliciting a strong immune
response against bacterial cell surface carbohydrate
antigens by conjugating a pathogen-specific capsular
polysaccharide (CPS) or O-antigen polysaccharide (O-

PS) linked to an immunostimulatory protein carrier.
Traditional conjugate vaccines are produced by
extraction, fragmentation, and purification of
pathogen-derived CPS or O-PS antigens, followed by
chemical activation and random conjugation to the
carrier protein (Figure 1a). Unfortunately, this process
can result in a number of undesirable outcomes
including highly variable saccharide density per carrier
protein, batch-to-batch product variability, and inter-
ruption of important B- and T-cell epitopes on the
carrier protein [30]. Moreover, the multistep process is

expensive and laborious, and is often met with low
yields due to recovery losses at each of the succes-
sive steps.

An alternative approach is bioconjugation, also known as
protein glycan coupling technology (PGCT), which le-
verages glyco-competent E. coli as cellular factories for
total biosynthesis of designer conjugate vaccines against
a wide array of different pathogenic bacteria (for recent
reviews, see Refs. [31,32]). The method involves
simultaneous expression of the oligo- or polysaccharide

antigen of interest, a glycan conjugating enzyme, and a
carrier protein in laboratory strains of E. coli, resulting in
a streamlined and low-cost process that overcomes many
of the shortcomings associated with production of
traditional conjugates (Figure 1b). At the heart of bio-
conjugation technology are single-subunit trans-
membrane oligosaccharyltransferases (OSTs) from
bacteria. These enzymes are capable of transferring
diverse CPS and O-PS antigens from undecaprenyl py-
rophosphate (Und-PP) onto either the amide group of
asparagine residues in the case of N-glycosylation [13] or

the hydroxyl group of serine or threonine residues in the
case of O-glycosylation [33]. Most notable among these
enzymes is the OST from C. jejuni named PglB (CjPglB),
www.sciencedirect.com
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Figure 1

Traditional conjugate versus bioconjugate vaccine production. (a) The traditional chemical conjugation method for producing conjugate vaccines is a
multistep process in which the polysaccharide (PS) antigen is purified from the pathogen of interest, separated from its lipid carrier, chemically activated,
and randomly conjugated to a separately expressed and purified carrier protein. Following conjugation, several additional rounds of purification are
required before administration. (b) The bioconjugation method involves engineering non-pathogenic E. coli with three components – glycan biosynthesis
pathway, conjugating enzyme, and carrier protein – that enable a renewable supply of glycoprotein products. Glycan biosynthetic pathways are typically
~10–20 kb in length and encode most of the enzymes (~10–15) required for biosynthesis of the CPS or O-PS antigen of interest. The polysaccharides
are assembled on a lipid carrier on the cytoplasmic side of the inner membrane (IM), translocated to the periplasmic side of the IM by the Wzx flippase,
and extended by the Wzy polymerase. The OST recognizes the reducing-end of the pre-assembled polysaccharide and transfers it en bloc to a preferred
acceptor sequence (e.g., DQNAT) in a periplasmically expressed carrier protein. While these components are commonly encoded in plasmids that are
used to transform the bacterial host, stable integration of these components into the host genome has also been demonstrated. Overall, the process
yields a glycoconjugate in which the polysaccharide antigen is site-specifically conjugated at one or more defined locations in the carrier protein.
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which exhibits relaxed specificity towards the glycan
structure [13,14] and is capable of installing diverse

oligo- and polysaccharides onto almost any recombinant
protein that harbors a D/E-X-1-N-Xþ1-S/T (X-1,þ1 s P)
acceptor site (“glyco-tag”) either natively or engineered
at internal or terminal locations in the carrier [25,34].

Based on this catalytic flexibility, CjPglB has been widely
used to produce antibacterial conjugate vaccines bearing
O-PS, CPS, or other exopolysaccharide antigens that are
pre-assembled as Und-PP-linked intermediates and ul-
timately transferred to suitable vaccine carrier proteins.
In one of the earliest examples, CjPglB was leveraged for

the production of a conjugate vaccine composed of the
Shigella dysenteriae serotype 1 O-PS (O1) glycan conju-
gated to exotoxin A from Pseudomonas aeruginosa (EPA)
harboring two engineered glycosylation sites [35].
Importantly, this conjugate was tested in human clinical
trials (NCT01069471) and found to be well tolerated
both locally and systemically and elicited statistically
significant immune responses against O1 poly-
saccharides at all time points in all groups [36].

A major advantage of bioconjugation technology is its

modularity, offering a plug-and-play platform where any
of the three main componentse polysaccharide antigen,
conjugating OST, and carrier protein e can be readily
interchanged for producing an array of new conjugate
www.sciencedirect.com
designs. In the context of carrier proteins, EPA remains
a popular choice because of its long-established

compatibility with the bacterial glycosylation machin-
ery [35]. However, conjugates involving licensed carrier
proteins such as cross-reactive material 197 (CRM197)
from Corynebacterium diphtheriae and protein D (PD) from
Haemophilus influenzae have been produced in glyco-
competent E. coli and are immunogenic and protective
in mice [24]. Bioconjugation technology has also been
used in conjunction with carrier proteins that are from
the same pathogen as the glycan and are chosen based
on their high conservation across serotypes, thus
potentially providing broader vaccine coverage [37].

This modularity has also been exploited for customizing
the polysaccharide component, thereby enabling con-
jugates against an array of bacterial pathogens including
enterohemorrhagic E. coli (EHEC), Francisella tularensis,
Klebsiella pneumoniae, Salmonella enterica, Shigella sp.,
Staphylococcus aureus, and Streptococcus pneumoniae, among
others (for a complete list of conjugate vaccines pro-
duced using bioconjugation technology that are in pre-
clinical or clinical development, see Ref. [32]). In the
past three years alone, the repertoire of polysaccharides

that have been successfully transferred by CjPglB has
expanded to include conjugate vaccines against en-
terotoxigenic E. coli (ETEC) serotypes O78 and O148
[24], extraintestinal pathogenic E. coli (ExPEC)
Current Opinion in Chemical Biology 2024, 81:102500

www.sciencedirect.com/science/journal/13675931


4 Glycobiology (2024)
serotype O25B [38], and Group A Streptococcus (Strep
A or GAS) [39]. Interestingly, in the case of GAS, the
reducing end of the native Group A carbohydrate (GAC)
structure contains a rhamnose residue that is b1,4-
linked to GlcNAc, which is known to be a poor sub-
strate for CjPglB [40]. To overcome this limitation, the
authors created a hybrid GAC structure with a remod-
eled reducing end structure that was compatible with

CjPglB [39], highlighting the engineerability of the
bioconjugation platform.

Despite the many successes to date, the biosynthesis of
heterologous polysaccharides can be challenging for
several reasons. First, the pathways are large, as exem-
plified by the 9-16-kb gene clusters (encoding 12e15
enzymes) involved in making CPS antigens for several
different S. pneumoniae serotypes [41]. Because of their
large size, creation of plasmids that encode these clus-
ters involves complicated cloning strategies for stitching

together multi-gene pathways. Second, maintaining
such large plasmids in the host can be difficult; hence,
efforts have been made to stably integrate glycan
biosynthesis pathways and/or the OST into the host
genome [42e45]. Third, the host E. coli strain may
natively express certain factors, which can be both
productive and counterproductive. For example, the
E. coli WecA enzyme natively primes the lipid carrier
with N-acetylglucosamine (GlcNAc), which is advanta-
geous for making heterologous polysaccharides that
initiate with GlcNAc such as the O-PS from S. dysenteriae
serotype 1 but is undesirable for those that initiate with
alternative monosaccharides such as the O-PS from
S. flexneri serotype 6 that primes off N-acetylgalactos-
amine (GalNAc). To address these issues, strain engi-
neering to delete certain genes and overexpress others
has proven to be an effective strategy for enhancing
polysaccharide biosynthesis [46]. It should also be noted
that conjugate vaccines have been produced by intro-
ducing the OST and carrier protein directly into the
pathogenic bacterium, which bypasses some of the
limitations of E. coli as a host and avoids the need for
cloning and recombinant expression of the O-antigen

gene cluster altogether [45,47].

Another challenge relates to the conjugating enzyme,
CjPglB, which despite its relaxed glycan substrate
specificity exhibits poor transfer of polysaccharides
lacking an acetamido group modification on their
reducing-end sugar [14] or involving b1,4-linkage be-
tween the two sugars proximal to the lipid carrier [40].
One of the most successful strategies for overcoming
these limitations of CjPglB has been the use of alter-
native conjugating enzymes. Indeed, non-homologous

bacterial OSTs have been identified that execute O-
linked glycosylation of serine and threonine residues in
distinct acceptor sequences and can transfer long-chain
bacterial polysaccharide antigens to carrier proteins
expressed in the E. coli periplasm. Among these, the O-
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linking OST named PglL from Neisseria meningitidis is
particularly promiscuous with respect to the glycan
structures it can transfer [33] and has been used to
create an O-linking bioconjugation strategy [48], with
the caveat that it requires an 8-amino acid glycosylation
site flanked by long hydrophobic sequences. Recently,
this system has been used to produce novel conjugate
vaccine candidates against Brucella abortus [49], ExPEC
serotypes O5 and O7 [50], uropathogenic E. coli
(UPEC) serotype O21 [51], and K. pneumoniae O1 [52].
PglS is another O-linking enzyme and the only OST
shown thus far to transfer polysaccharides with glucose
at the reducing end [53], allowing the bioconjugation of
unique polysaccharide structures from S. pneumoniae
[54] and multiple serotypes of K. pneumoniae including
K1 and K2 [55,56]. The newest class of O-linking OSTs
termed TfpM from Moraxellaceae bacteria can transfer
diverse CPS and O-PS structures from a variety of
bacteria including Salmonella, S. pneumoniae, K. pneumo-
niae, and Group B Streptococcus (GBS), with M. osloensis
TfpM being used to create an immunogenic conjugate
containing the type III CPS from GBS [57]. It is
anticipated that bioconjugation technology will expand
even further as the substrate preferences for these and
other coupling enzymes are more deeply characterized,
and their conjugating activity optimized.

Biosynthesis of conjugate vaccines in
bacterial cell-free systems
An emerging alternative for making conjugate vaccines is

cell-free glycoprotein synthesis (CFGpS) technology,
which uses cell lysates rather than living cells to syn-
thesize glycoproteins in vitro (for recent reviews, see
Refs. [18e20]) (Figure 2a). CFGpS leverages glyco-
competent E. coli strains, such as those described
above, to source cell extracts that are selectively enriched
with glycosylation components, namely lipid-linked oli-
gosaccharides (LLOs) and OSTs (for a detailed meth-
odology, see Ref. [58]). The resulting extracts enable
seamless integration of transcription/translation with
protein glycosylation in a one-pot reaction scheme for

efficient and site-specific glycosylation, as we demon-
strated in proof-of-concept studies using model glyco-
sylation components [17,59]. Building on this earlier
work, we recently adapted the method for biosynthesis of
conjugate vaccines bearing O-PS antigens from highly
virulent F. tularensis Schu S4, with the resulting conju-
gates completely protecting mice against lethal challenge
with live vaccine strains (LVS) of F. tularensis [21]. Simi-
larly, CFGpS was used to prepare a conjugate against
UPEC serotype O7 and ETEC serotype O78 with the
latter eliciting bactericidal antibodies against the path-

ogen [21,24], highlighting the modularity of the CFGpS
platform that allows structurally diverse LLOs to be
readily interchanged in a plug-and-play fashion. In addi-
tion to different LLOs, distinct OSTs including CjPglB
and PglL from Neisseria gonorrhoeae have been shown to
function in CFGpS reactions [22], potentially expanding
www.sciencedirect.com
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Figure 2

Cell-free approaches for making glycoproteins. (a) Cell-free glycoprotein synthesis (CFGpS) utilizes glyco-enriched extracts derived from a glyco-
sylation competent E. coli chassis strain carrying plasmids encoding the glycan biosynthesis pathway and the OST. Lysates derived from this strain are
supplemented with translation components (e.g., NTPs, T7 RNA polymerase, amino acids) and primed with the DNA encoding the protein of interest,
such that transcription/translation and glycosylation are integrated in a single pot reaction. Glycosylation involves membrane vesicles that are enriched
with the OST and LLOs. (b) In vitro glycosylation (IVG) involves mixing separate preparations of solvent-extracted LLOs, membrane-purified OST, and
purified acceptor protein that is already folded. Each component is added in controllable ratios to permit glycoprotein production in a cell-free reaction.
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the functionality of the technology. Importantly, cell-free
platforms offer multiple advantages including that they:
(1) are unconstrained by the potential toxicity arising
from expression of the glycosylation components; (2)
offer shortened vaccine development timelines; (3)
enable distributed glycoprotein production; (4) can be
freeze-dried for distribution at temperatures up to 50 �C
and reconstituted by just adding water; and (5) can be
produced inexpensively (wUS$0.50 for a single conju-
gate vaccine dose) [21,23]. With these advantages, bac-

terial cell-free systems offer unique opportunities to
accelerate development of glycosylated biologics and
enable decentralized, cold chain-
independent biomanufacturing.
Bacteria-enabled systems for making mAbs
with structurally defined glycans
Therapeutic mAbs are an expanding class of immuno-
therapy that are widely used in the treatment of cancers,
autoimmune diseases, inflammatory diseases, and bac-
terial and viral infections. Most therapeutic mAbs are of
the immunoglobulin G (IgG) subclass, which are glyco-
sylated at a conserved asparagine residue (Asn297) in the
CH2 domain of the fragment crystallizable (Fc) region.
N-linked glycosylation of IgG-Fc is vital for the structural
and functional properties of mAb therapeutics, including

stability, pharmacokinetics, safety, and clinical efficacy
[60]. IgG-Fc glycans are also essential for Fc receptor
binding, and consequently, are key drivers of important
antibody effector functions such as antibody-dependent
cell-mediated cytotoxicity (ADCC) and complement-
dependent cytotoxicity (CDC).
www.sciencedirect.com
A significant challenge in mAb drug development is the
fact that glycans attached at Asn297 are usually het-
erogeneous due to (1) variable addition and processing
of outer-arm residues (e.g., sialic acid, galactose) and
core fucose residues that occur on the biantennary
heptasaccharide, GlcNAc2Man3GlcNAc2 (designated
G0) and (2) alterations that are dependent on the
expression host and culture conditions. Because such
glycoform heterogeneity can adversely affect important
therapeutic properties, strategies for creating mAbs with

only tailored glycoforms that exert specific effects are in
high demand. For instance, absence of core fucose on
IgG-Fc N-glycans increases mAb binding affinity to
FcgRIIIa present on immune effector cells and pro-
motes enhanced ADCC activity [61]. Additionally,
increased galactosylation and sialylation on IgG Fc N-
glycans enhances the anti-inflammatory and
complement-dependent cytotoxicity (CDC) properties
of mAbs [62]. To this end, glycoengineering has
emerged as a promising approach for producing desired
mAb glycoforms with improved efficacy (e.g., enhanced

ADCC, CDC) and safety (e.g., decreased immunoge-
nicity) (for recent reviews, see Refs. [63,64]). Here, we
focus on antibody Fc engineering strategies that
leverage bacterial cell and cell-free expression systems.

One of the most user-friendly strategies for engineering
N-glycan structures is chemoenzymatic synthesis in
which glycosyltransferase (GT) enzymes are used in
conjunction with appropriate N-glycan precursors and
sugar donors to build desired glycoforms (for a recent
review, see Ref. [65]). Over the past several decades,
Current Opinion in Chemical Biology 2024, 81:102500
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our understanding of the in vitro activity of GTs has
increased greatly, revealing a large collection of enzymes
that are capable of remodeling N-glycans outside of
living cells. Importantly, bacterial cells have played a
major role in enabling chemoenzymatic glycan synthesis.
For example, glyco-engineered E. coli that produce
human-type Man3GlcNAc2 N-glycans [16] have been
used for supplying lipid-linked N-glycan precursors that

were elaborated in vitro to create hybrid-type and
complex-type biantennary N-glycans using a panel of
GTs (e.g., Nicotiana tabacum GnTI, Homo sapiens GnTII,
and Bos taurus GnTIV and b1,4-GalT) that were sepa-
rately expressed and purified from E. coli cells [66]. A
similar panel of enzymes, also expressed and purified
from E. coli, was used to generate synthetic LLOs
bearing hybrid-type and complex-type N-glycans [67].
The free reducing-end or lipid-linked N-glycans result-
ing from these chemoenzymatic approaches serve as
well-defined starting materials for building glycopro-

teins via either transglycosylation using endoglycosi-
dases (ENGases) [68] (discussed in more detail below)
or in vitro glycosylation (IVG) using single-subunit OSTs
[17,67] (Figure 2b), respectively.

Chemoenzymatic synthesis strategies have also been
developed for direct glycan editing on intact glycopro-
teins, enabling the conversion of undesired and/or het-
erogeneous N-glycan structures into more uniform and
Figure 3

Chemoenzymatic approaches for producing homogeneous glycoprotein
bacterial host cells exhibit glycosylation profiles that are heterogenous or und
single GlcNAc monomers by the action of endo- or exoglycosidases (top), and
complex N-linked glycans via transglycosylation using bacterial endoglycosida
human-like glycans is performed using glycosyl hydrolase (GH) and glycosyltra
left), to remove or introduce essential epitopes such as core fucose, bisecting
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desirable glycoforms (Figure 3). For example, remodel-
ing the N-glycans on bovine RNAse B from high-
mannose type to disialylated complex biantennary N-
glycans was accomplished in both step-wise and one-pot
reactions with a small panel of bacterial and mammalian
glycoside hydrolases (GHs) and GTs that were recom-
binantly expressed and purified using E. coli cells [69].
While the authors obtained soluble expression by trun-

cating the mammalian GTs to remove their trans-
membrane domains and fusing them to maltose-binding
protein (MBP), this common E. coli-centric solubiliza-
tion strategy is not always successful. To address this
issue, we recently described a strategy for topologically
converting membrane-bound GTs into water soluble
biocatalysts, enabling high-level expression of nearly 100
difficult-to-express GTs, predominantly of human
origin, in the E. coli cytoplasm with retention of bio-
logical activity [70]. Following purification from E. coli, a
subset of these water-soluble enzymes was utilized for

in vitro remodeling of both free and protein-linked N-
glycans including those found on the therapeutic mAb
trastuzumab, yielding homogeneous G0, G2, or G2S
glycoforms. Along similar lines, an enzyme immobiliza-
tion strategy was recently described whereby
Man5GlcNAc2 N-glycans on a monomeric Fc fragment
were remodeled to a mono-antennary human-like N-
glycan using GTs that were expressed and biotinylated
in E. coli and subsequently tethered to streptavidin-
s. Glycoprotein targets expressed in mammalian or glyco-competent
esired, respectively. In both cases, the glycan moieties can be trimmed to
these trimmed structures can then serve as acceptors for extension into

ses (ENGases) produced using E. coli. Alternatively, glycan remodeling of
nsferase (GT) enzymes, which can also be produced using E. coli (bottom
GlcNAc, and terminal galactose or sialic acid.

www.sciencedirect.com
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coated silica beads [71]. The immobilized system
eliminates the need for GT and intermediate product
purification and enables reuse of the enzymes, which
should decrease the cost and simplify scalability of GT-
driven remodeling reactions.

Alongside GTs, GH enzymes are an important compo-
nent of the glycoengineering toolkit for redesigning

therapeutic glycoproteins. Among these enzymes, endo-
glycosidases (ENGases) from bacteria stand out as
excellent candidates for modifying the glycosylation
patterns of heterogeneously glycosylated glycoproteins.
ENGases can effectively trim branched N-linked glycans,
yielding a single GlcNAc monomer on the glycoprotein.
Furthermore, ENGases can also be utilized as glyco-
synthase enzymes through strategic mutations that
eliminate their hydrolytic activity. Glycosynthase en-
zymes require activated glycosyl donors in the form of
oxazolones or anomeric fluorides for en bloc transfer of pre-
synthesized glycans to another acceptor glycan. Notably,
this approach has been successfully exploited to generate
homogeneously glycosylated glycoproteins including
mAbs (for a recent review, see Ref. [72]). Despite their
shared ability to catalyze hydrolysis of the same glycosidic
linkage (b1-4 of chitobiose core), various versions of
ENGases exhibit distinct substrate requirements for
complex, hybrid, and high-mannose glycans, as well as
core fucosylation of the reducing-end GlcNAc. This
structural specificity also extends to the glycosynthase
mutants of ENGases. For instance, three diverse bacterial

ENGases, namely Endo-S, Endo-F3 and Endo-S2, were
used to orthogonally transglycosylate the Fab and Fc
domains of the therapeutic mAb cetuximab, with
different glycoforms based on the substrate specificities
of the enzymes [73].

The advent of ENGase technology has not only facili-
tated remodeling of N-glycans on mammalian cell-
derived glycoproteins but has also opened avenues for
using E. coli to source glycoproteins whose glycans can be
humanized by ENGase-mediated remodeling (Figure 3).
Specifically, glyco-competent E. coli cells were used to

install a linear GalNAc5GlcNAc N-glycan onto AcrA from
C. jejuni, a model bacterial glycoprotein that harbors two
glycosylation sites at Asn123 and Asn273 [26]. Subse-
quent digestion with exo-a-N-acetylgalactosaminidase
(GalNAcase) led to the production of a pure AcrA
glycoform carrying only single GlcNAc residues, which
were converted to human-type Man3GlcNAc2 glycans by
EndoA-mediated transglycosylation. We recently
extended this approach to install complex human-type
glycans at the conserved Asn297 residue in the Fc
domain of human IgG1 (unpublished observations).

Specifically, glycocompetent E. coli cells were used to
produce human hinge-Fc fragments bearing
GalNAc5GlcNAc N-glycans that were trimmed with
GalNAcase and subsequently converted to complex,
human-type G2 N-glycans (Gal2GlcNAc2Man3GlcNAc2)
www.sciencedirect.com
using EndoS. Importantly, the resulting G2-hinge-Fc
exhibited strong binding to human FcgRIIIa (CD16a),
one of the most potent receptors for eliciting ADCC.
Taken together, these studies open the door to using
E. coli for the production and subsequent glycoengin-
eering of human mAbs and fragments derived thereof.

Perspectives and conclusions
Ever since the discovery of CjPglB and its functional
transfer into laboratory strains of E. coli [12], great
progress has been made in the development of bacterial
cell and cell-free systems that leverage enzymes from all
domains of life to biologically couple glycans to protein
carriers. These efforts have resulted in a dramatic
expansion of the bacterial glycoengineering toolkit that,
in turn, is enabling the biosynthesis of a growing number
of biopharmaceuticals with customized glycosylation.
While conjugate vaccines and mAb-based products are
among the most advanced targets to be addressed with

bacterial glycoengineering, other important biopharma-
ceutical products including erythropoietin (EPO) [17],
interferon a-2b [74], MUC1 [15], and RNase A
[16,75,76] have been glycosylated in E. coli, with many
more on the horizon. It is also worth mentioning that
while total biosynthesis of full-length mAbs bearing
hybrid- or complex-type N-glycans has yet to be
achieved in E. coli cells or cell-free extracts, the
demonstration of hinge-Fc and IgG glycosylation with
bacterial or paucimannose N-glycans in both cell-based
and cell-free systems [16,26,77] provides precursor

material for glycan remodeling as discussed above or a
starting point for future efforts focused on direct OST-
mediated installation of human-type N-glycans.

Increasingly, researchers are exploring ways to improve
these systems by focusing on the three recombinantly
produced components e OST, glycan, and acceptor
protein e that all can be optimized in different ways for
achieving efficient and controllable protein glycosylation.
For example, the exploration of OSTs from various spe-
cies beyond the well-characterized CjPglB has enabled

glycan transfer to an almost limitless number of minimal
acceptor sequences including the native site in human
IgG antibodies [77]. Insights gained from structural
studies of these enzymes provide a basis for rational
enzyme engineering, which can be used to tailor acceptor
site specificity [76] or enhance glycosylation efficiency
[78]. The ability to generate diverse glycan structures via
recombinant expression of synthetic operons that are
optimally tuned for glycan construction is itself an area of
intensive research. These efforts are providing access to a
growing number of natural and unnatural glycan struc-

tures, which is made possible by the creative mixing and
matching of GTenzymes that processively assemble both
N- and O-glycans directly on acceptor proteins or on lipid
carriers followed by en bloc transfer to acceptor proteins
[15,16,70,79]. At the same time, methods borrowed from
synthetic biology and metabolic engineering such as
Current Opinion in Chemical Biology 2024, 81:102500
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combinatorial DNA assembly, promoter engineering,
chassis strain engineering, and genome integration are
emerging as powerful ways to improve glycosylation ef-
ficiency overall [42,43,45,46,80,81]. For cell-free plat-
forms specifically, considerations of extract processing
and formulation, which have already been shown to be
important for extract stability, glycosylation efficiency,
and overall system economics [21e23,58], are likely to

take center stage as efforts to optimize these systems
ramp up over the coming years. Finally, complementing
all these efforts is the development of high-throughput
screening platforms that will be instrumental in expe-
diting the design-build-test pipelines in glycoengineer-
ing [16,75,76,78,81e86].

With the maturation of bacterial glycoengineering
techniques, the development of designer glycoprotein
therapeutics and vaccines becomes increasingly acces-
sible and controllable. Recent advances in both bacterial

cell-based and cell-free systems have paved the way for
efficient and cost-effective production of complex gly-
coproteins with tailored glycan structures. These
breakthroughs offer promising solutions for making and
studying structurally well-defined glycoproteins, but
also hold potential for accelerating the translation of
glycosylated biopharmaceuticals from bench to bedside.
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