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ABSTRACT: Cell-free synthetic biology enables rapid prototyping of
biological parts and synthesis of proteins or metabolites in the absence of
cell growth constraints. Cell-free systems are frequently made from crude
cell extracts, where composition and activity can vary significantly based
on source strain, preparation and processing, reagents, and other
considerations. This variability can cause extracts to be treated as black
boxes for which empirical observations guide practical laboratory
practices, including a hesitance to use dated or previously thawed
extracts. To better understand the robustness of cell extracts over time, we
assessed the activity of cell-free metabolism during storage. As a model, we
studied conversion of glucose to 2,3-butanediol. We found that cell
extracts from Escherichia coli and Saccharomyces cerevisiae subjected to an
18-month storage period and repeated freeze−thaw cycles retain
consistent metabolic activity. This work gives users of cell-free systems a better understanding of the impacts of storage on
extract behavior.
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■ INTRODUCTION
Cell-free systems are derived from the soluble components of
crude cell lysates (often referred to as cell extracts) that
contain active biological machinery for metabolism, tran-
scription, and translation without homeostasis or growth
constraints faced by living cells. These systems have emerged
as powerful tools for studying and harnessing protein and
metabolite synthesis.1−4 Applications span prototyping genetic
parts or metabolic pathways,5−14 biomanufacturing small
molecules,15−18 synthesis of proteins,19,20 molecular diagnos-
tics,21−23 and educational kits.24−29

Cell-free gene expression has demonstrated prolonged
transcription/translation activity with reactions >48 h using
prokaryotic30,31 and eukaryotic32,33 cell extracts. Extract
metabolism (including glycolysis, cofactor regeneration, and
heterologous anabolic pathways) also remains active over 72 h
for the synthesis of terpenes9 and styrene.18 Although cell
extracts are preserved by ultralow temperature storage (−80
°C)34 or lyophilized for long-term storage,20,24,35−41 aliquots
without cryo- or lyo-protectants remain capable of consistent
protein synthesis yields after 5 freeze−thaw cycles.42 However,
to our knowledge, there is not clear evidence on the
consistency of thawed extracts and on how long extracts can
be safely stored, especially while maintaining high metabolic
activity. A rigorous analysis of the impact of prolonged storage
on cell-free metabolism would address these open questions.

Here, we report a long-term study of metabolic stability in
cell extracts derived from Escherichia coli and Saccharomyces
cerevisiae enriched with enzymes for 2,3-butanediol (BDO)
synthesis from glucose. Extracts were prepared following
conventional protocols43,44 from the lysates of cells engineered
for BDO synthesis,43,45 and then cell-free biosynthesis
reactions were run periodically over an 18-month storage
period to track substrate, pathway intermediate, and product
profiles. Cell-free metabolism was also assessed after 5 cycles of
freezing and thawing the extracts. Both stability tests
demonstrated robust metabolic profiles from the bacterial
and yeast cell extracts, supporting the ability to use batches of
cell extract for extended periods of time in prototyping,
biomanufacturing, or educational applications.

■ RESULTS AND DISCUSSION
We assessed the metabolic stability of extracts from E. coli and
S. cerevisiae enriched with enzymes for 2,3-BDO synthesis43,44

after storage at −80 °C for up to 18 months and after 5
freeze−thaw cycles (Figure 1a). First, we expressed alsD and
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alsS from Bacillus subtilis in strains of both E. coli and S.
cerevisiae along with budC from Klebsiella pneumoniae
producing meso-BDO in E. coli and BDH1 in S. cerevisiae
producing R,R-BDO. Additionally, the S. cerevisiae strain
expressed noxE from Lactococcus lactis for NAD recycling.
Cells were grown, harvested, and lysed to produce extracts
using standard methods.34,43,44,46 Aliquots of these extracts
were flash frozen in liquid nitrogen and then stored at −80 °C
for up to 18 months. At ten time points over the 18 months,
extracts were thawed and used for cell-free biosynthesis of 2,3-
BDO from glucose using enzymes present in the extracts
(Figure 1b and c). Cell-free biosynthesis reactions were
performed by adding 160 mM glucose, 1 mM NAD, 2 mM
ATP, glutamate salts, and buffer to enzyme-enriched extracts
and incubating reactions at 30 °C for 20 h (full materials and
methods available in the Supporting Information). E. coli-based
reactions produced 114.3 ± 12.4 mM m-BDO immediately
after extract preparation, which decreased insignificantly to 110
± 5.4 mM m-BDO after 18 months of storage, representing

<4% change within error (Figure 1b). Similarly, the activity of
S. cerevisiae-based reactions remained nearly constant with 90
± 5.6 mM R,R-BDO synthesized by fresh extract and 89.3 ±
4.0 mM R,R-BDO synthesized by extract stored for 18 months.
We also sought to assess the impact of storage on glycolysis

and the rate of BDO formation (Figure 1c). Glucose
consumption rates remained comparable over the extended
storage window, changing from 26.8 ± 1.2 mM/h to 25.6 ±
1.5 mM/h for E. coli-based reactions and 35.2 ± 6.1 mM/h to
36.9 ± 3.0 mM/h for S. cerevisiae-based reactions. This kinetic
consistency over storage time was also observed for BDO
synthesis rates, which were proportional to BDO titers (Supp.
Tables S1−2). In addition, kinetic traces of key metabolites
retained similar profiles after 18 months of storage for both E.
coli-based reactions (Figure 1d) and S. cerevisiae-based
reactions (Figure 1e). These profiles did not show significant
differences at 3 months, 6 months, or 12 months of storage
(Supp. Figures S1−2). E. coli-based reactions produced more
BDO than S. cerevisiae-based reactions, while the S. cerevisiae-

Figure 1. Cell-free metabolism remains consistent over 18 months of storage. (a) Schematic of extract preparation, cell-free metabolism, and
stability testing reported here. (b) BDO titers in cell-free reactions performed over the course of an 18-month storage period. (c) Glucose
consumption rates for cell-free reactions over the course of extended storage. (d) Metabolite time courses for cell-free reactions with E. coli extract
immediately after preparation (solid) and after 18 months of storage (dotted). (e) Metabolite time courses for cell-free reactions with S. cerevisiae
extracts before (solid) and after storage (dotted). Data represent mean ± standard deviation of 3 technical replicates.
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based reactions had higher glucose consumption rates despite
containing a lower extract concentration (∼6 mg total protein/
mL S. cerevisiae reactions versus ∼13 mg total protein/mL E.
coli reactions)43,44 (Supp. Figure S3). Polyacrylamide gel
electrophoresis suggests that E. coli extracts have a higher
proportion of BDO pathway enzymes (Supp. Figure S4).
Similar robustness in cell-free metabolism was observed after

sequentially thawing extracts at room temperature and flash-
freezing them 5 times (Figure 2). BDO titers averaged 116.6 ±
2.2 mM for E. coli-based reactions and 90 ± 1.9 mM for S.
cerevisiae-based reactions (Figure 2a). Glucose consumption
rates averaged 27.8 ± 1.8 and 37.7 ± 2.3, respectively (Figure
2b). The tight distribution of titers and rates throughout 5
freeze−thaw cycles indicates enzyme stability in crude cell
extracts without exogenous cryo-protectants. However, lyophi-
lized cell-free reactions have well-documented activity for both
protein synthesis20,24,38 and metabolism,47 providing an
additional layer of stability without the need for ultralow
temperature storage.
After validating extract stability, we confirmed the metabolic

activity of both E. coli-based and S. cerevisiae-based reactions
after lyophilizing in tubes and on paper.48 Lyophilized
reactions exhibit similar BDO synthesis capacity after
rehydration in either format (Supp. Figure S5). This method
can be investigated further for the deployment of cell-free
biosynthesis or larger-scale preparation of cell extracts without
requiring extensive freezer space.24,38,49

The overall consistency of cell-free metabolism indicates that
a single batch of extract can provide reliable information for
pathway prototyping, enzyme characterization, and biochem-
ical conversions over many months before a new batch is
required. Variability in extract batches has been documented
for cell-free protein synthesis,50−53 which often leads
researchers to utilize a single batch of extract for a given set
of experiments for greater consistency between conditions.
However, the metabolic dynamics of cell extracts stored for
extended periods had not, to our knowledge, been well
documented in prokaryotic and eukaryotic cell-free systems.
The consistency between BDO synthesis reactions performed
immediately after extract preparation and reactions performed
18 months later provide confidence when utilizing dated
extracts. We suspect the minor deviations in metabolic profiles
are due to variability in reagent lots rather than extracts.
Reagent lots were not held consistent for this study to ensure
extract stability was the primary variable and would not be
confounded by potential reagent instability during long-term
storage. Different reagent lots explained 35% of the variability
in cell-free protein synthesis reactions observed in a separate
study of interlaboratory consistency,53 indicating that differ-
ences in reagent lots can be more significant than extract

batches or storage time based on the present study. With these
data in mind, researchers can better prepare for large-scale or
collaborative studies in which cell-free reaction variability may
be a consideration.
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