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For decades, scientists and engineers have turned to biological 
systems for making energy, medicines and materials, espe-
cially when chemical synthesis is untenable1. Success in these 

endeavors depends upon identifying sets of enzymes that can con-
vert readily available substrate molecules (for example, glucose) 
to target products, with each enzyme performing one of a series 
of chemical modifications. Unfortunately, this is difficult because 
design–build–test (DBT) cycles (iterations of re-engineering organ-
isms to test and optimize new sets of enzymes) are slow, especially 
with the high number of testable enzyme combinations in multistep 
pathways2. This challenge is exacerbated in industrially relevant, 
non-model organisms for which genetic tools are not as sophisti-
cated, high-throughput workflows are often lacking, transformation 
idiosyncrasies exist and validated genetic parts are limited.

Yet, many industrial bioprocesses (for example, synthesis of 
solvents3) rely on non-model organisms as they offer exceptional 
substrate and metabolite diversity, as well as tolerance to metabolic 
end-products and contaminants. Clostridia in particular were used 
for industrial acetone–butanol–ethanol (ABE) fermentations in the 
early-to-mid 20th century because of their unique solventogenic 
metabolism, but were eventually phased out of use due to the suc-
cess of petroleum4. Acetogenic Clostridia, able to robustly ferment 
on a variety of abundant C1 gases5, have recently proven industrially 
relevant for full commercial-scale ethanol production using emis-
sions from the steelmaking process6. However, these strains tend 
to lack natural machinery to produce such solvents or other more 
complex products and the tools to engineer them are underdevel-
oped. While developing tools for engineering Clostridia is ongo-
ing and promising progress has been made7, discovering methods 

to speed up metabolic engineering DBT cycles for these and other 
non-model organisms would accelerate the re-industrialization of 
such organisms8.

Cell-free systems provide many advantages for accelerating 
DBT cycles9–11. For example, the open reaction environment allows 
direct monitoring and easy manipulation of the system. As a result, 
many groups have used purified systems to study enzyme kinetics 
and inform cellular expression: testing enzymatic pathway perfor-
mance in vitro, downselecting promising pathway combinations 
and implementing those in cells12,13. Crude lysates are becoming 
an increasingly popular alternative to purified systems to build 
biosynthetic pathways because they provide native-like metabolic 
networks as well as negate the need for protein purification14–17. 
For instance, dihydroxyacetone phosphate can be made in crude 
lysates and real-time monitoring can optimize production16. In 
addition, our group has shown that 2,3-butanediol18, mevalonate15, 
n-butanol14,19, limonene20 and styrene21 can be made in crude lysates 
with high productivities. However, to our knowledge, no attempts 
have been made using cell-free prototyping to improve engineering 
of industrially relevant, non-model organisms.

To address this opportunity, we report a new iPROBE approach 
to inform cellular metabolic engineering. The foundational prin-
ciple is that we can construct discrete enzymatic pathways through 
modular assembly of cell lysates, containing pathway enzymes pro-
duced by cell-free protein synthesis, making the DBT unit cellular 
lysates rather than genetic constructs or a re-engineered organism 
(Fig. 1). This reduces the overall time to build pathways from weeks 
(or months) to a few days, providing an increased capability to test 
numerous pathways with large numbers of enzyme combinations. 

In vitro prototyping and rapid optimization of 
biosynthetic enzymes for cell design
Ashty S. Karim   1,2,3, Quentin M. Dudley1,2,3, Alex Juminaga4, Yongbo Yuan4, Samantha A. Crowe   1,2,3, 
Jacob T. Heggestad1,2,3, Shivani Garg4, Tanus Abdalla4, William S. Grubbe1,2,3, Blake J. Rasor   1,2,3, 
David N. Coar5, Maria Torculas5, Michael Krein5, FungMin (Eric) Liew4, Amy Quattlebaum4, 
Rasmus O. Jensen4, Jeffrey A. Stuart5, Sean D. Simpson4, Michael Köpke   4 ✉ and 
Michael C. Jewett   1,2,3,6,7 ✉

The design and optimization of biosynthetic pathways for industrially relevant, non-model organisms is challenging due to 
transformation idiosyncrasies, reduced numbers of validated genetic parts and a lack of high-throughput workflows. Here we 
describe a platform for in vitro prototyping and rapid optimization of biosynthetic enzymes (iPROBE) to accelerate this process. 
In iPROBE, cell lysates are enriched with biosynthetic enzymes by cell-free protein synthesis and then metabolic pathways are 
assembled in a mix-and-match fashion to assess pathway performance. We demonstrate iPROBE by screening 54 different 
cell-free pathways for 3-hydroxybutyrate production and optimizing a six-step butanol pathway across 205 permutations using 
data-driven design. Observing a strong correlation (r = 0.79) between cell-free and cellular performance, we then scaled up our 
highest-performing pathway, which improved in vivo 3-HB production in Clostridium by 20-fold to 14.63 ± 0.48 g l−1. We expect 
iPROBE to accelerate design–build–test cycles for industrial biotechnology.

NatUre Chemical Biology | VOL 16 | August 2020 | 912–919 | www.nature.com/naturechemicalbiology912

mailto:Michael.Koepke@lanzatech.com
mailto:m-jewett@northwestern.edu
http://orcid.org/0000-0002-5789-7715
http://orcid.org/0000-0002-9900-5252
http://orcid.org/0000-0001-6662-341X
http://orcid.org/0000-0003-0642-1415
http://orcid.org/0000-0003-2948-6211
http://crossmark.crossref.org/dialog/?doi=10.1038/s41589-020-0559-0&domain=pdf
http://www.nature.com/naturechemicalbiology


ArticlesNature Chemical Biology

We demonstrate iPROBE by optimizing biosynthetic pathways 
for the production of 3-hydroxybutyrate (3-HB) and n-butanol 
in Clostridium autoethanogenum, revealing a strong correlation 
(r = 0.79) between in-cell and cell-free pathway performance. Then, 
we show that we can scale up the best 3-HB-producing C. autoetha-
nogenum strain, containing an iPROBE-selected pathway to achieve 
the highest reported titers of 3-HB at rates of >1.5 g l−1 h−1 in a con-
tinuous system using low-cost waste gas as a feedstock.

Results
Establishing the iPROBE framework. Our vision was to dem-
onstrate modular assembly of biosynthetic pathways by mixing 

multiple Escherichia coli (Eco) crude cell lysates, each individually 
enriched with a pathway enzyme, to identify best sets and ratios 
of enzymes and inform cellular design in an industrially proven5, 
non-model host organism, in this case acetogenic C. autoethano-
genum (Fig. 1). A unique feature of the iPROBE approach, relative 
to previous work in crude lysate-based cell-free prototyping14,19,20,22, 
is that pathways are assembled in two steps (that is, two pots). The 
first step is enzyme synthesis via cell-free protein synthesis (CFPS) 
and the second step is enzyme utilization via substrate and cofac-
tor addition to activate small-molecule synthesis (Supplementary 
Fig. 1). The two-pot iPROBE workflow is important for three rea-
sons. First, it allows for control of enzyme concentration in pathway 
construction by precise quantification of protein expression yields. 
Second, the control of enzyme concentrations allows us to assess 
pathway performance as a function of changing enzyme ratios and 
ensures enzyme balance. Third, negative physiochemical effects of 
the CFPS reaction mixtures19 on small-molecule biosynthesis can be 
reduced by implementing the controllable two-pot approach.

We selected 3-HB biosynthesis as our first demonstration 
because it is non-native to C. autoethanogenum and because of its 
importance as a high-value specialty chemical23. We first set out to 
use iPROBE to study the impact of enzyme ratios on pathway per-
formance (Fig. 2a). From acetyl-CoA, a key intermediate in both  
E. coli and Clostridium, three enzymes are required to make 3-HB: 
a thiolase (Thl), a hydroxybutyryl-CoA dehydrogenase (Hbd) and a 
thioesterase. E. coli and C. autoethanogenum have native thioester-
ases that convert 3-hydroxybutyryl-CoA to 3-HB24, which are often 
required to be overexpressed for optimal production25. However, 
for screening purposes these native enzymes were sufficient; only 
two non-native enzymes (Thl and Hbd) were required to be overex-
pressed in C. autoethanogenum cells and E. coli lysates. We initially 
selected a Thl gene from Clostridium acetobutylicum (Cac) and a Hbd 
gene from Clostridium kluyveri (Ckl) (Supplementary Table 1) and 
expressed them using the E. coli-based PANOx-SP CFPS system26, 
with soluble concentrations of 5.85 ± 0.82 µM and 19.31 ± 3.65 µM, 
respectively. Then, we designed five unique pathway combina-
tions titrating different concentrations of Thl while maintaining a 
constant concentration of Hbd by mixing different ratios of CFPS 
reactions (keeping total CFPS reaction added as constant using 
‘blank’ reactions containing no protein produced in vitro). Upon 
incubation with essential substrates, salts and cofactors (for exam-
ple, glucose, NAD and CoA), we assessed 3-HB synthesis over time  
(Fig. 2b). The cell lysate contains endogenous enzymes for glycoly-
sis that regenerate NADH27 and convert glucose to acetyl-CoA, pro-
viding the starting intermediate for 3-HB biosynthesis. As expected, 
no 3-HB was produced in the absence of Thl. The highest 3-HB 
titers were observed for 0.5 µM CacThl and 0.5 µM CklHbd1. We 
performed a similar titration of CklHbd1 while maintaining a con-
stant concentration of CacThl (Supplementary Fig. 2).

Developing a metric to quantify pathway performance. We next 
defined a pathway ranking system to assess pathway activity and 
inform cellular design. The basis of this ranking system is a single, 
quantitative metric for our cell-free experiments. We call this met-
ric the TREE score (titer, rate and enzyme expression). The TREE 
score combines, through multiplication, titer at reaction comple-
tion, rate during the most productive phase of biosynthesis and 
enzyme expression as measured by soluble protein fraction and 
total enzyme amount. Using our initial set of data (Fig. 2) as a guide, 
the TREE score is obtained by multiplying 3-HB titer at 24 h, the 
linear 3-HB production rate between 3 and 6 h and the sum of the 
average soluble fraction of the pathway enzymes, Thl and Hbd and 
the inverse of the total enzyme concentration for each of the five 
pathway combinations (Fig. 2c). While the TREE score rankings are 
not largely different from the titers (r = 0.89 for all 3-HB data in 
this study) or rates (r = 0.91 for all 3-HB data in this study) alone 
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(all 3-HB pathway TREE scores shown in Supplementary Fig. 3), 
they exaggerate differences that might arise from each component 
of the score. For example, combining titer and rate enables use of 
both in ranking cell-free pathway performance, which is helpful as 
it is unknown whether one is more or less important for inform-
ing cellular design. Additionally, we included the enzyme expres-
sion component to penalize a given pathway if in vitro expression 
is poor, decreasing its overall pathway rank. Typically, enzymes that 
are either lowly expressed or insoluble in vitro are challenging to 
express in vivo. Thus, the average solubility of all pathway enzymes 
overexpressed in the lysate was used to acquire a sense of how dif-
ficult the pathway might be to express. The inverse enzyme amount 
was used to penalize in vitro combinations that might improve a 
pathway’s performance but could be hard to express in cells. While 
there are multiple ways one could imagine ranking pathways or 
weighting the TREE score factors, reducing the complexity of avail-
able cell-free data was important as it enabled a rapid approach to 
rank pathways for iPROBE.

iPROBE informs plasmid design in Clostridium. We next aimed to 
validate that cell-free experiments could generate design parameters 
for DNA construction of biosynthetic pathways in cells, a difficult 
challenge because gene expression tools are often not as developed  

in non-model organisms. Selection of promoter regulatory 
strengths (for example, high, medium and low) for the expression 
of a coding sequence, in particular, is an essential factor in pathway 
tuning. Thus, we set out to develop a correlation between specific 
enzyme concentrations in iPROBE and specific strength regulatory 
architectures, relative promoter strengths and plasmid copy number 
for a single operon comprising the 3-HB pathway, for expression in  
C. autoethanogenum. To achieve this goal, we built cell-free pathway 
combinations for 3-HB by co-titrating (equimolar additions) seven 
different enzyme concentrations of CacThl and CklHbd1 in our reac-
tions (Supplementary Fig. 4). We ran each cell-free reaction for 24 h 
and measured the titer of 3-HB produced (Supplementary Fig. 4c).  
We observed that as the amount of added enzyme increases, the 
amount of 3-HB increases up to a threshold of 1 µM of each enzyme 
added. In parallel, we constructed plasmids expressing CacThl and 
CklHbd1 under eight regulatory architectures of increasing strength 
and transformed them into separate strains of C. autoethanoge-
num. We ran small-scale bottle fermentations of each strain under 
anaerobic conditions on carbon monoxide (CO), hydrogen (H2) 
and carbon dioxide (CO2) gas and measured stationary phase titers 
of 3-HB (Supplementary Fig. 4d). In vivo, we found that increases 
in expression strength led to higher 3-HB titers, but did not sat-
urate 3-HB expression, as seen in vitro (Supplementary Fig. 4).  
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These data suggest a limitation in expression range with current, 
well-characterized genetic parts available for use in C. autoethano-
genum. However, given the trends observed, we used these data to 
build an initial cell-free-to-cell correlation that connects cell-free 
enzyme concentrations in iPROBE to cellular plasmid regulatory 
strength. We found that generally, using <0.1 µM enzyme in vitro 
corresponds to low regulatory strengths in vivo, using 0.1–0.3 µM 
enzyme in vitro corresponds to medium strengths in vivo and using 
>0.3 µM enzyme in vitro corresponds to high strengths in vivo. In 
principle, this allows us to screen many different pathway combina-
tions in cell-free systems, a key advantage of iPROBE, and provides 
a rational recommendation for plasmid construction of those path-
way combinations in Clostridium.

iPROBE down-selects pathways for Clostridium expression. To 
showcase the iPROBE approach, we next screened several possible 
3-HB pathway combinations using cell-free experiments, ranked a 
subset of candidate combinations using the TREE score and showed 
cellular C. autoethanogenum 3-HB biosynthesis from CO/H2/CO2  
gas correlates with cell-free experimental results. To do this, we 
tested six enzyme homologs of each Thl and Hbd originating from 
different Clostridium species, as these would be the best initial 
candidates for Clostridium expression (Fig. 3a and Supplementary 
Table 1). We selected all pathway combinations of the 12 enzymes, 
keeping a fixed total concentration of soluble enzyme added 
(Supplementary Fig. 5). By measuring 3-HB production over the 
course of 24 h, along with soluble enzyme expression for each of 
the enzymes, we are able to calculate TREE scores for each of the 36 
pathway combinations in vitro (Fig. 3a). We found that a majority 
of pathway combinations performed poorly and used iPROBE to 
identify that the top six pathways contained CklHbd1 for the sec-
ond step. Testing 36 pathway combinations took less than a week 
to build. In contrast this could have taken more than 6 months in 
Clostridium using standard workflows.

We selected a subset of four pathway combinations from 
the iPROBE screening to test in C. autoethanogenum labeled A 
(CklThl1/CacHbd), B (CklThl2/CklHbd1), C (CklThl1/CklHbd1) 
and D (CacThl/CklHbd1) (Fig. 3b). These pathways represent our 
highest-performing pathway, two in the middle (C having a large 
degree of variability in performance) and one of our low perform-
ers. We constructed and transformed DNA with strong regula-
tory architectures and each of the four pathway enzyme sets into 
separate strains of C. autoethanogenum. We ran small-scale bot-
tle fermentations of each strain under anaerobic conditions on  

CO/H2/CO2 gas mixture and measured 3-HB titers at four time points  
during the fermentation (Fig. 3b). We observed that the best cell-free 
pathway combination as determined by TREE score (D) also per-
formed the best in Clostridium cells, achieving 33.3 ± 1.4 mM 3-HB. 
The worst pathway combination in cell-free experiments (A) was 
also the worst performer in C. autoethanogenum. The other two 
pathway combinations (B and C) were not statistically different 
in the cell-free environment. The exact ranking of pathways B,  
C and D differ between in vitro and in vivo construction, but all 
three of these designs were much better than a majority of the 36 
combinations tested in the cell-free environment. Notably, we did 
not observe detectable levels of nonspecific byproducts such as ace-
toacetate or acetone.

Even though the E. coli-based lysate conditions do not necessar-
ily approximate the in vivo Clostridia conditions (for example, pH 
and aerobic versus anaerobic), our data highlight that the cell-free 
environment is a powerful prototyping environment for assessing 
biochemical information and informing cellular design. This is 
especially true for downselecting pathway combinations that should 
not be tested in cells (that is, produce little to no product). In fact, 
the best pathway designs tested in two recently published studies 
that explored autotrophic 3-HB production in acetogenic Clostridia 
produced ~4 mM and ~1 mM 3-HB28,29. Their pathways correspond 
to TREE scores of 1.06 ± 0.07 and 0.02 ± 0.00, respectively. Based on 
our iPROBE screening, we would have suggested not testing these 
combinations in vivo. For context, our best pathway had a TREE 
score of 17.76 ± 3.08. In sum, iPROBE offers a modular framework 
to rapidly assess a large number of pathway combinations, bypass-
ing DNA construction and transformation limitations to facilitate 
implementation of promising pathway combinations for engineer-
ing success in cells.

Cell-free pathway prototyping for n-butanol biosynthesis. We 
next aimed to show that iPROBE could be used to optimize lon-
ger pathways. We selected the six-step pathway from acetyl-CoA to 
n-butanol as a model because butanol is an important solvent and 
drop-in fuel with a US$5 billion per year market (Fig. 4a). The idea 
was to use iPROBE to optimize cell-free butanol production by con-
structing several pathway variants. The challenge with this optimi-
zation goal is the number of possible permutations. Indeed, testing 
just six homologs for each of the first four steps of the pathway at 
three different enzyme concentrations would alone require 314,928 
pathway combinations, which exceeds typical analytical pipelines. 
To manage the landscape of testable hypotheses, we implemented 
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a neural network-based, machine-learning algorithm to predict 
beneficial pathway combinations, following the construction of an 
initial dataset.

In creating the initial dataset, we chose six homologs of each Thl, 
Hbd, Crt and Ter (Fig. 4a and Supplementary Table 1). We tested 
five concentrations for each enzyme homolog in a pathway con-
text, consisting of our base set of enzymes (Fig. 4b), totaling 120 
pathway combinations. We built these combinations in cell-free 
reactions, measured butanol production over time and calculated 
TREE scores for each (Fig. 4c). In total, we collected these addi-
tional data in five experimental sets of 20 pathway combinations 
with each set taking 5 d (3 d of HPLC time included). A majority 
of the enzyme homologs did not out-perform the original enzyme 
set (EcoThl/CbeHbd/CacCrt/TdeTer), which has been extensively 
characterized30–32. However, we found that substituting CklHbd1 
can double the TREE score at high concentrations, in agreement 
with an independent study that found a 1.6-fold improvement in 
ABE fermentation with C. acetobutylicum by replacing native Hbd 
with CklHbd133.

With this initial dataset collected, we identified ten neural net-
work architectures based on a combination of heuristic search for 
model design and tenfold cross-validation (training and testing) for 
model scoring. We then used a gradient-free optimization strategy  
to maximize butanol production. We utilized the ten best architec-
tures (most accurate predictions and highest model entropy) to make 
pathway combination predictions (homolog set and enzyme ratios), 
which we could then build with the cell-free framework (Fig. 4b). 
Design predictions suggesting enzyme concentrations of <0.01 µM 
(a majority <2 nM) were ruled out due to experimental constraints 
and we built the remaining 43 predictions in cell-free reactions 
(Supplementary Fig. 6a). We compared the results with two addi-
tional sets of experiments: (1) a set of varying enzyme ratios using 
only the base set enzymes (21 pathway combinations; Supplementary  
Fig. 6b) and (2) a hand-selected set of 18 pathway combinations based 
on our understanding of the biosynthetic pathway (Supplementary 
Fig. 6c). In total we tested 205 unique pathway combinations 
(base-set combinations, initial round combinations and data- 
driven designs) (Fig. 4d; all data shown in Supplementary Fig. 7).  
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Nearly 20% of the total pathway combinations screened had higher 
TREE scores than our base case and we achieved over fourfold higher 
TREE scores (~2.5 times higher titer and 58% increase in rate) over 
the base-case pathway combination. The consensus enzyme set for 
top-performing pathways included EcoThl, CklHbd1, CacCrt and 
TdeTer with variations in enzyme concentrations. Five of the top six 
TREE scores each arose from pathways predicted from the neural 
network-based approach and were better than our hand-selected 
set, highlighting that deep-learning approaches can be used with a 
lack of a priori knowledge of the pathway.

Analysis of the iPROBE pathway combinations showed sev-
eral key design parameters. First, we observed that there are spe-
cific enzyme homologs and concentrations that improve the TREE 
score. For example, the chosen Thl does not seem to matter in the 
20 top-performing combinations, whereas the selection of Hbd 
does (Supplementary Fig. 8a); CklHbd1 was superior to the rest. 
Second, iPROBE enabled identification of enzymes not to test in 
Clostridia. Specifically, CneThl, CklHbd2, PpuCrt, FsuTer, FjoTer 
and CpaTer all underperformed in the cell-free context. Being 
limited by throughput in non-model organisms, it is important to 
identify both promising and poor enzyme candidates. Third, we 
noticed that in the 20 top-performing combinations, Hbd is present 
at significantly (P < 0.001) higher concentrations and the median 
Crt concentration is lower, though not significantly, than the ini-
tial 0.3 µM (Supplementary Fig. 8b). This suggests that higher con-
centrations of Hbd and Ter relative to Crt are optimal for effective 
pathway operation, which can be further investigated in vitro by 
measuring metabolite fluxes and achieved in vivo by constructing 
plasmids with proper genetic architectures.

We next assessed iPROBE’s ability to inform cellular design 
by constructing representative pathway combinations from the 
iPROBE screening in C. autoethanogenum strains to produce buta-
nol. While we tried to cover a wide range of TREE scores, challenges 
with transformation limited us to two pathway combinations scoring 
among the top five combinations (CacThl/CklHbd1/CacCrt/TdeTer 
and EcoThl/CklHbd1/CacCrt/TdeTer), two pathway combinations 
in the middle range of the dataset and five pathway combinations 
near the tail end of all combinations tested (Supplementary Fig. 9a). 
To avoid diverting flux toward 3-HB, we identified and knocked out 
a native thioesterase that was able to hydrolyze 3-HB-CoA from 
our screening strain. After monitoring butanol production over 
the course of 6 d (Supplementary Fig. 9a), we observed a promising 
correlation between in vivo expression in C. autoethanogenum and 
TREE scores from iPROBE (Fig. 4e). This emphasizes that selecting 
top-performing pathways from iPROBE can improve production 
in Clostridium and decreases the number of strains that need to be 

tested. Of note, the iPROBE data suggested that balancing Hbd and 
Ter expression to keep crotonyl-CoA at minimal concentrations 
improves pathway performance. This hypothesis is corroborated by 
the in vivo results. We see lower butanol production when Hbd is 
expressed highly and Ter is expressed lowly but higher production 
when both are expressed highly.

While overall butanol production was low in C. autoethanoge-
num, we were able to increase production using the iPROBE-selected 
CklHbd1 from 0 mM to 0.2 ± 0 mM. In addition, when comparing 
two butanol synthesis pathways in vivo (one with the standard 
CacHbd and one with the iPROBE-selected CklHbd1) we increased 
butanol production sixfold from 0.2 ± 0 mM to 1.1 ± 0 mM 
(Supplementary Fig. 9b) by replacing the trans-2-enoyl-CoA reduc-
tase (Ter) enzyme with the ferredoxin-dependent electron bifur-
cating enzyme complex (Bcd–EtfA:EtfB) naturally used for these 
activities in Clostridia34. This is not surprising in light of a recent 
study that showed that Ter is detrimental to ABE fermentation 
when introduced in C. acetobutylicum35. Using the Bcd–EtfA:EtfB 
complex, we were also able to increase production to 22.0 ± 0.1 mM 
by manipulating the plasmid architecture (Supplementary Fig. 9c). 
For comparison, the best previously reported butanol production 
in engineered acetogenic Clostridia was ~2 mM36. Moreover, the 
Bcd–EtfA:EtfB complex is extremely oxygen-sensitive37 and has so 
far been inactive in E. coli lysates30, highlighting an area for potential 
improvement of iPROBE (that is, compatibility of E. coli lysates with 
non-model organisms). Taken together, we observed that iPROBE 
strongly correlated with cellular performance (Supplementary  
Fig. 10, r = 0.79) for 20 pathways tested for both 3-HB production 
and butanol synthesis. Overall, this work demonstrates the power of 
coupling data-driven design of experiments with a cell-free proto-
typing framework to select feasible subsets of pathways worth test-
ing in vivo for non-model organisms.

Scaled-up fermentations of iPROBE-selected pathway. Next, the 
best-performing iPROBE-selected strain for 3-HB production was 
chosen for process scale-up from 0.1-l bottle fermentations to 1.5-l 
continuous fermentations using CO/H2/CO2 gas as the sole carbon 
and energy source. Over a 2-week fermentation, we monitored 
3-HB and biomass in a control strain and our iPROBE-selected 
strain with and without optimized fermentation conditions  
(Fig. 5a,b). In optimized fermentations, we observed high titers 
of 3-HB, ~15 g l−1 (140 mM) at rates of >1.5 g l−1 h−1 in a continu-
ous system. This is not only higher than the previously reported 
concentration in acetogenic Clostridium28,29, but to our knowledge 
also exceeds the previously highest reported concentration for  
traditional model organisms like E. coli (titer of ~12 g l−1 and rate  
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of ~0.25 g l−1 h−1 in a fed batch system)24,38 and yeast (titer of ~12 g l−1 
and rate of ~0.05 g l−1 h−1 in a fed batch system)39 without any addi-
tional genomic modifications to optimize flux into the pathway. 
As expected with an acetogenic host, we observed the production 
of acetate as a byproduct during fermentation (Supplementary  
Fig. 11). We anticipate that genome modifications to increase 3-HB 
flux could further improve fermentation titers, as was seen in a 
recent study reporting a 2.6-fold improvement in 3-HB production 
in a related Clostridium by downregulation of two native genes28.

Surprisingly, we also observed production of a new metabo-
lite, 1,3-butanediol (1,3-BDO), at 3–5% of the 3-HB levels and up 
to 0.5 g l−1 (Fig. 5c). This is attributed to nonspecific activity of a 
native aldehyde:ferredoxin oxidoreductase and alcohol dehydroge-
nase able to reduce 3-HB to 3-hydroxybutyraldehyde and further 
to 1,3-BDO. Indeed, no 1,3-BDO was observed when transform-
ing the pathway into a previously generated aldehyde:ferredoxin 
oxidoreductase knockout strain40. These enzymes have been shown 
to reduce a range of carboxylic acids to their corresponding alde-
hydes and alcohols through reduced ferredoxin36,41. While the (R)-
(−)-form of 1,3-BDO has been produced via other routes42,43, when 
using the Ckl-derived Hbd we also detected the (S)-(+)-form of 
1,3-BDO as determined by chiral analysis, which to our knowledge 
has never before been produced in a biological system. This chi-
ral specificity is determined by the chosen 3-hydroxybutyryl-CoA 
dehydrogenase, either (S)-specific Ckl-derived Hbd or (R)-specific 
Cne-derived PhaB. Given that 1,3-BDO is used in cosmetics and 
can also be converted to 1,3-butadiene used in nylon and rubber 
production with a US$20 billion per year market23,44, the discovery 
of this pathway is important. In summary, iPROBE provides a quick 
and powerful framework to optimize and discover biosynthetic 
pathways for cellular metabolic engineering efforts, including those 
in non-model hosts.

Discussion
We demonstrate a modular cell-free platform, called iPROBE, for 
constructing biosynthetic pathways with a quantitative metric for 
pathway performance selection (the TREE score). We establish 
that iPROBE can be used to engineer and improve small-molecule 
biosynthesis in non-model organisms that can be arduous to 
manipulate. In one example, iPROBE enabled the construction 
of a strain of C. autoethanogenum that produces high titers and 
yields of 3-HB in continuous fermentations (~20× higher than 
the previous highest report). The scale-up work also led to the 
identification of a new route to 1,3-BDO, for which we could 
produce the (R)- and (S)-isomer depending on enzyme selection. 
In another example, we used iPROBE with data-driven design 
of experiments to test 205 pathway combinations in vitro for  
the production of butanol and showed increased butanol produc-
tion in acetogenic Clostridia by testing a further subset of designs 
in vivo. Notably, iPROBE demonstrates a strong correlation  
with in vivo pathway performance.

Despite the inherent contextual differences in E. coli lysates and 
Clostridia cells (for example, oxygen sensitivity), we have success-
fully demonstrated that iPROBE facilitates cellular design in three 
ways: (1) identifying sets of enzymes that work well together to 
produce a desired biological chemical; (2) downselecting poorly 
performing pathway/enzyme candidates; and (3) evaluating opti-
mal ratios of enzymes and potential synergy between enzymes 
before embarking on laborious experiments in these organisms. 
iPROBE complements existing enzymatic assay approaches and 
provides the advantage of its combinatorial capability rather than 
an ability to select any single enzyme alone. This can acceler-
ate DBT cycles (weeks with iPROBE instead of many months in 
Clostridium). While not all issues with engineering non-model 
organism expression are mitigated by iPROBE, it complements and 
enhances in vivo strategies.

Future developments of iPROBE could seek to improve the ability 
to design and optimize biosynthetic pathways in non-model organ-
isms. For example, efforts to mimic physiochemical conditions of 
the organism of interest (for example, cofactors) and various condi-
tions that mimic the phase of fermentation used during biochemical 
production (for example, batch versus semicontinuous and aerobic 
versus anaerobic) could be explored. In addition to enhancing the 
prototyping environment, refining the TREE score (for example, by 
weighting each factor) with more in vitro to in vivo correlation data 
will help to identify the minimal amount of cell-free data needed to 
accurately inform in vivo pathway performance. Indeed, we believe 
that the TREE score metric serves as a starting point and anticipate 
it evolving and improving in subsequent works. Finally, we note that 
while we focused on Clostridium as a cellular factory, many of our 
findings and tools could be applied to conventional hosts.

Looking forward, we anticipate that iPROBE will facilitate DBT 
cycles to decrease the number of strains that need to be engineered 
in vivo and the time required to achieve desired process objectives. 
This will increase the flexibility of biological processes to adapt to 
new markets, expand the range of fossil-derived products that can 
be displaced with bioderived alternatives and enhance the economic 
benefits for co-produced fuels.
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Methods
Bacterial strains and plasmids. E. coli BL21(DE3) (NEB) was used for preparation 
of cell extracts, which were used to express all exogenous proteins in vitro22. A 
derivate of C. autoethanogenum DSM10061 obtained from the German Collection 
of Microorganisms and Cell Cultures GmbH (DSMZ) was used for in vivo 
characterization and fermentations45. For butanol production, this strain was used 
with a native thioesterase (CAETHG_1524) knockout made using Triple Cross 
recombination as described previously46.

Twenty-three enzymes were examined in this study (Supplementary Table 1).  
DNA for all enzyme homologs tested were codon-adapted for E. coli using  
IDT codon optimizer. Non-clostridial sequences were codon-adapted for  
C. autoethanogenum using a LanzaTech in-house codon optimizer, and all 
native clostridial genes were used as is. E. coli- and C. autoethanogenum-adapted 
sequences are listed in Supplementary Notes 1 and 2, respectively. For the cell-free 
work, the pJL1 plasmid (Addgene, 69496) was used. The modular pMTL80000 
plasmid system47 along with acsA40, fdx40, pta48 and pfor49 promoters were used for 
C. autoethanogenum plasmid expression.

Cell extract preparation. E. coli BL21(DE3) cells were grown, collected, lysed and 
prepared using previously described methods14,50.

iPROBE reactions. CFPS reactions were performed to express each enzyme 
individually using a modified PANOx-SP system described in previous 
pubications26,51. Fifty-microliter CFPS reactions were carried out for each 
individual enzyme in 2-ml microcentrifuge tubes. Enzyme concentrations in 
CFPS reactions were quantified by 14C-leucine incorporation during in vitro 
translation. Then reactions performed for identical enzymes were pooled 
together when multiple reaction-tube volumes were needed to keep a consistent 
50-µl reaction volume and geometry for every CFPS reaction. Based on molar 
quantities of exogenous enzymes in each CFPS reaction determined by radioactive 
measurement, CFPS reactions were mixed to assemble complete biosynthetic 
pathways in 1.5-ml microcentrifuge tubes. CFPS reactions constitute 15 µl of a 
30-µl-total second reaction. When the total CFPS reaction mixture constituted 
less than 15 µl, ‘blank’ CFPS reaction was added to make the total amount of 
CFPS reaction up to 15 µl. The ‘blank’ reactions consist of a typical CFPS reaction 
with no DNA added. The 15-µl CFPS mixture was then added to fresh extract 
(8 mg ml−1), kanamycin (50 μg ml−1), glucose (120 mM), magnesium glutamate 
(8 mM), ammonium glutamate (10 mM), potassium glutamate (134 mM), 
glucose (200 mM), Bis Tris (pH 7.8) (100 mM), NAD (3 mM) and CoA (3 mM); 
final reaction concentrations are listed. Reactions proceeded over 24 h at 30 °C. 
Measurements from samples were taken at 0, 3, 4, 5, 6 and 24 h.

Quantification of protein produced in vitro. CFPS reactions were performed 
with radioactive 14C-leucine (10 µM) supplemented in addition to all 20 standard 
amino acids. We used trichloroacetic acid to precipitate radioactive protein 
samples. Radioactive counts from trichloroacetic acid-precipitated samples was 
measured by liquid scintillation to quantify soluble and total yields of each protein 
produced as previously reported (MicroBeta2; PerkinElmer)26,27. All enzyme 
expression data are listed in Supplementary Table 2.

Metabolite quantification. HPLC was used to analyze 3-HB and n-butanol. We 
used an Agilent 1260 series HPLC system via a refractive index detector. 3-HB and 
n-butanol were separated with 5 mM sulfuric acid as the mobile phase and one of 
two column conditions: (1) an Aminex HPX-87H or Fast Acids anion exchange 
column (Bio-Rad Laboratories) at 35 or 55 °C and a flow rate of 0.6 ml min−1 or (2) 
an Alltech IOA-2000 column (Hichrom) at 35 or 65 °C and flow rate of 0.7 ml min−1 
as described earlier52. 1,3-BDO was measured using gas chromatography analysis, 
employing an Agilent 6890N gas chromatograph equipped with an Agilent CP-SIL 
5CB-MS (50 m × 0.25 μm × 0.25 μm) column, autosampler and a flame ionization 
detector (FID) as described elsewhere52. For chiral analysis of (S)-(+)-1,3-BDO and 
(R)-(−)-1,3-BDO an Agilent 6890N gas chromatograph equipped with a Restek 
Rt-bDEXse 30 m × 0.25 mm ID × 0.25 µm df column and an FID was used. Samples 
were prepared by heating for 5 min at 80 °C, followed by 3-min centrifugation 
at 14,000 r.p.m. Exactly 400 µl of supernatant was then transferred to a 2-ml 
glass autosampler vial and 100 µl of an internal standard solution (5-methyl-
1-hexanol and tetrahydrofuran in ethanol) was added. The capped vial was then 
briefly vortexed. Sample vials were transferred to an autosampler for analysis 
using a 1-µl injection, a split ratio of 60 to 1 and an inlet temperature of 230 °C. 
Chromatography was performed with an oven program of 50 °C with a 0.5-min 
hold to a ramp of 3 °C min−1 to 70 °C to a ramp of 2 °C min−1 to 100 °C with a final 
ramp at 15 °C min−1 to 220 °C with a final 2-min hold. The column flow rate was 
30 cm s−1 using helium as the carrier gas. The FID was kept at 230 °C. Quantitation 
was performed using a linear internal standard calibration.

TREE score calculations. The TREE score was calculated by multiplying the titer 
by the rate by enzyme expression metric.

TREE score ¼ titer ´ rate ´ average solubility þ total enzyme½ �1� �

The titer is the metabolite concentration (mM) in the cell-free reaction at 
24 h, when the reaction is complete. The error associated with the titer is one s.d. 
of n = 3 independent experiments. The rate is the slope of the linear regression of 
metabolite concentrations (mM h−1) taken at 3, 4, 5 and 6 h time points (n = 4). 
The rate-associated error is the standard error of the slope calculated by the linear 
regression. The average soluble fraction term is calculated by first determining 
the soluble fraction (soluble protein/total protein, n = 3 independent experiments) 
for each individual enzyme via 14C-leucine incorporation. The average soluble 
fraction is then the average value of soluble enzyme fractions (mM soluble/mM 
total protein) (in this case, five enzymes) and the error associated with the soluble 
fraction term is propagated error. The concentration of total enzyme is calculated 
by the addition of the final concentrations of each enzyme (µM soluble protein). 
The final error on the TREE score is the propagated error of each individual 
component. Data used to generate TREE scores were not overlaid plots because 
this value and the propagated error do not represent a distribution of data. All 
3-HB data including TREE scores are provided in Supplementary Dataset 1. All 
butanol data including TREE scores are provided in Supplementary Dataset 2.

In vivo gas fermentations. In vivo cultivation and small-scale bottle fermentation 
studies were carried out as described earlier using a synthetic gas blend, 
representative of waste gases from steel manufacturing, consisting of 50% CO, 
10% H2, 40% CO2 (Airgas)49. Continuous fermentations were carried out in 1.5-l 
continuous stirred tank reactors with constant gas flow as described elsewhere52,53.

Design of experiments using neural networks. A neural-network-based approach 
was used to explore the vast landscape of possible experimental designs. We 
first processed the cell-free butanol dataset and then developed and optimized 
the neural network to provide cell-free pathway recommendations. Modeling 
enzymatic pathways requires a mix of continuous and categorical variables. 
Because many machine-learning algorithms require numeric input and output 
variables, we used one-hot encoding, which is a process that converts categorical 
variables into a numerical format that machine-learning algorithms can use. This 
method treats categorical variables as multidimensional binary inputs that must 
sum to one. The concentration values were used as is, resulting in a 30-variable 
input matrix: 25 variables representing the categorical variation (that is, different 
homologs) and 5 representing the concentration. We used these features to build 
our deep neural network regressions.

We generated and evaluated neural network architectures based on a 
combination of heuristic search for model design and tenfold cross-validation for 
model scoring54. We limited our model architecture search to fully connected layers 
but varied the number of hidden layers (between 5 and 15 layers) and the number 
of nodes in each layer (between 5 and 15 nodes). We first randomly generated 
hundreds of model architectures based on these criteria. Using a genetic algorithm 
we performed crossovers and mutations on current model architectures, which 
were then trained using the back-projection method and scored using tenfold 
cross-validation55. Although no direct regularization methods were used the 
cross-validation step reduces the chance of over fitting. We proceeded using the 
genetic algorithm hundreds of times with thousands of iterations. Of the final 100 
model architectures created, the top 10 models were chosen such that these models 
had the highest scores and highest design entropy. This ensures model diversity, 
which highlights data ambiguity (that is, model conclusions drawn from the  
same dataset).

We then optimized each of the ten models using the Nelder Mead 
Simplex, which provides a gradient-free optimization strategy to find the local 
minimum;56 in our case maximum butanol production. This method generated 
10 recommendations per model yielding a total of 100 recommendations. From 
this we selected the top ten recommendations that maximized both the average 
predicted butanol production (TREE score) and maximized the input entropy. 
This method ensured that we were not over-sampling in an area and set the basis 
for our hybrid exploration and exploitation-based sampling strategy. Each of these 
represents an exploitation-based recommendation, but through enforcing diversity 
in models and the recommendation vector we also were able to explore the sample 
space. From these optimized models, ten predictions were selected from each 
of the top ten architectures to be constructed in the cell-free environment. We 
removed predictions that were impossible experimentally (that is, concentrations 
too low to pipette accurate volumes).

Statistics and reproducibility. All statistical information provided in this 
manuscript is derived from n = 3 or greater independent experiments unless 
otherwise noted in figure legends. Error bars on metabolite and protein 
quantification in vitro and in vivo represent one s.d. derived from these 
experiments. All error bars on TREE score values are propagated errors as 
described in the TREE score calculations in Methods. These data do not represent 
a distribution of measured data but rather a calculation with propagated errors. 
In comparing the significance of enzyme concentration on TREE scores for 
butanol production in Supplementary Fig. 8b we used the Mann–Whitney U-test 
to determine whether enzyme concentrations of the enzyme combinations that 
produced the top 20 TREE scores were greater than the enzyme concentrations of 
the entire dataset.
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Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All cell-free data generated and shown in this manuscript are provided in 
Supplementary Table 2 and Supplementary Datasets 1 and 2 (.xlsx). Any additional 
data or unique materials presented in the manuscript may be available from the 
authors upon reasonable request and through a materials transfer agreement.
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