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Highly conserved among eukaryotic cells, the AMP-activated kinase (AMPK) is a central regulator
of carbon metabolism. To map the complete network of interactions around AMPK in yeast (Snf1)
and to evaluate the role of its regulatory subunit Snf4, we measured global mRNA, protein and
metabolite levels in wild type, Dsnf1, Dsnf4, and Dsnf1Dsnf4 knockout strains. Using four newly
developed computational tools, including novel DOGMA sub-network analysis, we showed the
benefits of three-level ome-data integration to uncover the global Snf1 kinase role in yeast. We for
the first time identified Snf1’s global regulation on gene and protein expression levels, and showed
that yeast Snf1 has a far more extensive function in controlling energy metabolism than reported
earlier. Additionally, we identified complementary roles of Snf1 and Snf4. Similar to the function of
AMPK in humans, our findings showed that Snf1 is a low-energy checkpoint and that yeast can be
used more extensively as a model system for studying the molecular mechanisms underlying the
global regulation of AMPK in mammals, failure of which leads to metabolic diseases.
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Introduction

AMP-activated kinases (AMPKs) are highly conserved among
yeast, plants, and mammals and are central regulators
involved in cellular development and survival (Polge and
Thomas, 2007). Mammalian AMPK, for example, is a master
regulator of energy control (Kahn et al, 2005). Its function is
linked to metabolic and aging diseases and it is a key drug
target against obesity and diabetes (Hardie, 2007a). Through
homology studies, yeast AMPK (Snf1) has been used as a
model to study human AMPK. For example, the upstream
kinases of Snf1 (Elm1, Pak1, and Tos3) helped identify their
mammalian counterparts, Lkb1 and CaMKK-b, that activate
human AMPK (Hardie and Sakamoto, 2006).
The yeast Snf1 regulates carbon metabolism during growth

on various carbon sources (Celenza and Carlson, 1986;
Carlson, 1999). In a complex with its regulator Snf4 and
scaffolding protein Gal83, Snf1 regulates the usage of
alternative carbon sources through the transcription factors
(TFs) Mig1 and Cat8 (Schuller, 2003). Two other Snf1

scaffolding proteins Sip1 and Sip2 determine distinct Snf1-
substrate specificity, sub-cellular localization and function
(Vincent et al, 2001).
There is, however, growing evidence that suggests a much

broader role of Snf1 as a master regulator of carbon and energy
metabolism. Genome-wide transcriptional profiling in yeast
batch cultures has identified that active Snf1 is required for
more than 400 of 1500 gene expression changes under glucose
exhaustion (DeRisi et al, 1997; Young et al, 2003). At the level
of protein interactions (BioGRID database) (Stark et al, 2006),
Snf1 associates with 209 proteins, only 10% of which are
enriched (hypergeometric test: P¼1.5E�5) within GO carbo-
hydrate metabolic process group (e.g., Adr1, Cat8, Sip4,
Pho85, Gsy2, Reg1, Glc7). Moreover, similar to mammalian
AMPK, Snf1 has been found to respond to various nutrient and
environmental stresses including oxidative stress (Hong and
Carlson, 2007), implicating a role for Snf1 as a global regulator
in addition to controlling the usage of various carbon sources
(Gancedo, 1998). Furthermore, the remarkable structural
conservation of AMPKs’ heterotrimeric complexes, specific
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upstream activators, and downstream targets (at the transcrip-
tional, protein synthesis and degradation, and posttransla-
tional levels) in different kingdoms suggests a common AMPK
ancestral function as a key regulator of energy homeostasis
(Polge and Thomas, 2007).
Clarifying the organization and interactions of the Snf1

regulatory network is important for uncovering the complexity
of global AMPK function and, ultimately, for using yeast as a
model to study the role of AMPK in humans. However, neither
transcriptional profiling, nor protein–protein interactions, nor
ancestry alone can adequately describe the global regulatory
role of Snf1. For this, a systems approach combining global
measurements across different levels of the cellular hierarchy
(mRNAs, proteins, and metabolites) is required. Recently,
Ishii et al (2007) and Castrillo et al (2007) showed the utility of
such an approach for mapping the cellular response of
Escherichia coli and Saccharomyces cerevisiae, respectively, to
genetic and environmental perturbations. Here, we integrated
data from genome-wide mRNA and protein profiling and
metabolite measurements with different networks comprising
protein–protein interactions, protein–DNA interactions, and
metabolic reaction stoichiometry, with the following objec-
tives: (1) to show the use of novel algorithms for integrated
analysis of high-throughput experimental datasets; (2) to
reconstruct a global regulatory network for the protein kinase
Snf1; and (3) to evaluate whether the components Snf1 and
Snf4 of the Snf1 protein kinase complex have additional
functions.

Results and discussion

Dataset collected in this study

We first collected a global dataset for wild-type S. cerevisiae
CEN.PK113-7D and three Snf1 complex knockout mutants
Dsnf1, Dsnf4, Dsnf1Dsnf4 (Supplementary Table I) grown in
triplicate in carbon-limited chemostat cultivations at a fixed
dilution rate D¼0.100 h�1 (see Materials and methods).
Abundances of gene, protein, and intracellular metabolites
were quantified using Affymetrix GeneChip Yeast Genome 2.0
Arrays (Wodicka et al, 1997), multidimensional protein
identification technology (MudPIT) followed by quantitation
using stable isotope labeling approach (Washburn et al, 2001;
Usaite et al, 2008b), and gas chromatography coupled to mass

spectrometry (Villas-Boas et al, 2005b), respectively. We
quantified a total of 5667 transcripts, 2388 proteins, and 44
intracellular metabolites. At a threshold of Po0.05, a total of
1651, 1810, and 2395 mRNAs; 381, 396, and 352 proteins; and
20, 14, and 34 metabolites had significantly changed abun-
dance levels in the knockout Dsnf1, Dsnf4, Dsnf1Dsnf4
mutants compared with the wild-type strain, respectively
(Supplementary Table II). However, only 159, 151, and 231
genes were identified to have significant changes in both
mRNA and proteins in the knockout Dsnf1, Dsnf4, Dsnf1Dsnf4
mutants compared with the wild-type strain, respectively.
Among these there was the same change in abundance, that is
bothmRNA and proteinwere up- or downregulated, for 84, 87,
and 88% of the proteins, respectively. Genes, whose mRNA
and protein expression change correlated, belonged to
carbon and amino-acidmetabolism and indicated the presence
of strong transcription regulation in these pathways.
Genes, whose mRNA and protein had opposing significant
expression changes, indicated dual level of regulation and,
thus, the presence of physiologically meaningful regulation on
protein level.

Integrated analysis for mapping Snf1 interactions

To show how the biological system was reprogramed as a
result of deleting SNF1, SNF4, or both SNF1 and SNF4, we
applied four systems-wide methods that integrated our
experimental measurements of mRNA, protein, and metabo-
lites with data from protein–DNA binding (Hodges et al, 1999;
Harbison et al, 2004), protein–protein interaction databases
(Stark et al, 2006), and the yeast genome-scale metabolic
model (Forster et al, 2003) (Figure 1). These four methods
allowed us to identify reporter effectors reporter metabolites,
high scoring sub-networks, and high scoring DNA-to-protein
translation Onto a Graph-based Multi-level integrative Analy-
sis (DOGMA) sub-networks, and based on this we recon-
structed the global Snf1 kinase regulatory network (Figure 2).
In total, our four different analyses identified the significant
network interactions (Po0.05) in which the deletion of Snf1
has a critical function regulating global yeast metabolism
(Figure 2E). As the metabolome dataset is relatively scarce we
did not include this in our integrated data analysis, but only
used these data to support some of our findings in terms of

Figure 1 A systems approach to mapping Snf1 response pathways. The panels depict the central dogma with highlights on the different levels of regulation captured
by each method used in this work. Methods (A, B) are global methods to search for highly active biological sub-networks, whereas methods (C, D) are local scoring
systems for evaluation of the regulatory significance, or ‘activity’, of effectors and metabolites. Each panel highlights the type of interaction/association that constitutes
the basis of the underlying network graph used in the corresponding graph-based method. Nodes scored based on transcript level information are colored in gray. Nodes
scored based on protein abundance information are colored in orange. Only nodes that are part of the interaction network are colored; for example, the transcript T2 is
not colored in (C) as T2 is not part of the transcriptional regulatory network, but is colored in (B) because there is a translational association between T2 and P2. (A)
Represents high scoring sub-network analysis (Ideker et al, 2001) that, based on gene expression data, was used to identify co-regulatory circuits of directly connected
proteins and regulated genes that are significantly changing as a group in response to the loss of Snf1 kinase activity. (B) Represents a novel DOGMA sub-network
approach (described here for the first time) that, based on gene and protein expression data, was used to identify co-regulatory circuits of directly connected proteins and
regulated genes, and amplifies the significance of coordinated mRNA and protein expression that are significantly changing as a group in response to the loss of Snf1
kinase activity. (C) Represents Reporter Effector analysis tool (Oliveira et al, 2008) that, based on gene expression data, was used to identify TFs and regulatory proteins
whose connected genes were most significantly affected and responded as a group to genetic disruptions of the Snf1 complex. Here, P1 is a TF that targets Gene 3,
Gene 4, and Gene 5. (D) Represents Reporter Metabolite Analysis (Patil and Nielsen, 2005) that, based on gene (gray) or protein expression data (orange), was used for
discovering metabolic hot spots that significantly responded to the loss of Snf1 kinase activity. (E–H) The number of component (mRNA or proteins) identified for the
three different mutants in the different types of analysis.
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how Snf1 is globally regulating metabolism. Below we
describe the four different types of integrated analysis
separately followed by a presentation of the metabolome data.

Thereafter, we discuss how the results from the different types
of analysis can be integrated into reconstruction of the global
regulatory network.
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High scoring sub-network analysis

First, we used high scoring sub-network analysis (Ideker et al,
2002) to identify co-regulatory circuits of directly connected

proteins and regulated genes that are significantly changing as
a group in response to the loss of Snf1 kinase activity
(Figure 1A) (see Materials and methods). We used high
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scoring sub-network analysis using mRNA data, as this is the
only complete dataset covering expression of all genes in yeast
and that potentially could accounts for all possible signifi-
cantly changed protein and gene interactions. Not using
protein expression data on protein nodes might skew high
scoring sub-network analysis results in case of presence of
posttranscription regulation, but still the analysis identifies
transcriptionally co-regulated sub-networks. High scoring sub-
network analysis showed three sub-networks comprising 301,
363, and 334 nodes and 651, 987, and 834 edges for the Dsnf1,
Dsnf4, and Dsnf1Dsnf4 mutants, respectively. From these co-
regulated circuits, a total of 12, 18, and 13 proteins interacted
with the Snf1 kinase (based on the definition of BIOGRID-
Saccharomyces_cerevisiae v.2.0.25) for the Dsnf1, Dsnf4, and
Dsnf1Dsnf4mutants, respectively. The results are summarized
in Supplementary Table III and Figure 2B for theDsnf1mutant.
Only Snf1 kinase interacting proteins were included in the
reconstructed Snf1 kinase regulatory network to represent the
nodes most directly affected by the Snf1 kinase through
protein interaction (Figure 2E). High scoring sub-network
analysis identified expected glucose repression TF Mig1 as
well as protein nodes in redox and biogenesis (Figure 2B).
Results of the high scoring sub-network analysis were fairly
consistent in terms of interactions with components of
different parts of the metabolism for the three strains Dsnf1,
Dsnf4, and Dsnf1Dsnf4 (Figure 1E), but the targets vary
somewhat between the strains (Supplementary Table III).

DOGMA sub-network analysis

To integrate our transcriptomics and proteomics measure-
ments in the same analysis, we extended the high scoring sub-
network analysis by mapping protein abundance data for
protein nodes and mRNA data for DNA nodes, and included
interaction edges between mRNA species and their corre-
sponding proteins (Figure 1B). We call our new approach,
which amplifies the significance of coordinated mRNA and
protein expression, ‘DOGMA sub-network analysis’ (see
Materials and methods). DOGMA sub-network analysis
contains three types of interactions: protein–protein, pro-
tein—DNA, and ‘mRNA to protein’ translation interactions.
The network expansion arises from the inclusion of interac-
tions between each transcript (mRNA) and its corresponding
protein. Changes in proteome levels were used to score protein

nodes, whereas transcriptome (mRNA) data were used
to score DNA nodes. As for standard sub-network analysis,
a simulated annealing algorithm was used to identify
co-regulated regions in the network. DOGMA sub-network
analysis identified three networks comprising 444, 450, and
376 nodes and 766, 740, and 609 edges for the Dsnf1, Dsnf4,
Dsnf1Dsnf4mutants, respectively. Resulting high scoring sub-
networks showed connected circuits being significantly
regulated at gene, translation, and protein levels. From these
co-regulated circuits, a total of 21, 14, and 16 proteins that
interact with Snf1 kinase were identified for the Dsnf1, Dsnf4,
Dsnf1Dsnf4 mutants, respectively, and these are listed in
Supplementary Table IV. Dogma sub-network analysis identi-
fied more Snf1 kinase interacting proteins involved in fatty
acid and lipid metabolism compared with high scoring sub-
network analysis results (Figure 2A and B) indicating the
presence of significant posttranscriptional regulation in lipid
metabolism. These results were consistent among the three
strains studied (Figure 1F). Overall, both the high scoring sub-
network and the DOGMA sub-network analysis identified a
few proteins (e.g., Mig1, Snf4, Acc1, Gsy2) that were expected
on the basis of earlier studies, but we also identified many
other proteins interacting with Snf1, including proteins
involved in carnitine metabolism (Yat2, Cat2), lipid metabo-
lism (Smp2, Fas1, Fox2), and stress response (Hog1, Cna1).
Strikingly, for all three strains studied, B85% of the first
neighbors of the Snf1 kinase have a primary functional role
outside the carbon metabolism including redox, lipid meta-
bolism, and biogenesis.

Reporter effector analysis

We also applied our newly published ‘Reporter Effector’
algorithm (Oliveira et al, 2008) to identify TFs and regulatory
proteins whose target genes were most significantly affected
and responded as a group to genetic disruptions of the Snf1
complex (see Materials and methods and Figure 1C). Here,
Z-scores for each effector were calculated based on the average
of Z-scores of its adjacent genes (based on P-values from gene
expression data) in a network of 3246 protein–DNA interac-
tions and 484 effectors collected from ChIP-chip experiments
and the YPD database (Hodges et al, 1999; Harbison et al,
2004). The cumulative Z-scorewas corrected for the size of the
group and then converted back to P-values by using the normal

Figure 2 The reconstructed regulatory network of Snf1 kinase. The network was reconstructed by integrating mRNA and protein expression data for the Dsnf1mutant
versus the wild-type strain with previously reported protein–DNA (Hodges et al, 1999; Harbison et al, 2004) and protein–protein (BIOGRID-Saccharomyces_cerevisiae
v.2.0.25) (Stark et al, 2006) interactions, and with protein–metabolite interactions provided by the yeast genome-scale metabolic model (Forster et al, 2003). The network
includes Snf1-interacting proteins that were identified by using gene expression data and high scoring sub-network analysis (blue connections to diamonds), or protein
expression data and DOGMA analysis (blue connections to circles). Diamonds show gene expression data and circles show protein expression data, which are colored
according to log2-ratio color scale of Dsnf1 relative to WT. The network also includes Reporter Metabolites, around which mRNA or protein abundance changes were
significantly concentrated in response to the loss of SNF1 (gray connections to triangles and hexagons, respectively). Reporter Effectors of Snf1 (orange connections to
squares) show gene expression data. Reporter Effectors that are reported to associate to Snf1 kinase (Stark et al, 2006) are indicated using solid orange connections.
Dashed lines indicate molecular or physiological links between Snf1 and the Reporter Effectors, or between Snf1 and the Reporter Metabolites not reported earlier. Small
black arrow-diamonds represent previously determined Snf1-based phosphorylation of the Snf1 targets: Reporter Effectors and Snf1 interacting proteins (Ptacek et al,
2005). Nodes with black borders have significantly different (Po0.05) mRNA or protein expression data for the Dsnf1 mutant versus the wild-type strain. Genes and
proteins are named according to the SGDatabase nomenclature. PEP, phosphoenolpyruvate; SAICAR, 1-(50-phosphoribosyl)-5-amino-4-(N-succinocarboxamide)-
imidazole; UDP-GalNAc, UDP-N-acetyl-D-galactosamine; GlcNAc-1-P, N-acetyl-D-glucosamine 1-phosphate; m, mitochondrial; ext, extracellular. More detailed
information describing the sub-network, Reporter Effector, and Reporter Metabolite analyses outputs can be found in Supplementary Tables III–VII. (A) The components
identified using the DOGMA sub-network analysis. (B) The components identified using the high scoring sub-network analysis. (C) The identified reporter metabolites.
(D) The identified reporter effectors. (E) The combined and fully reconstructed interaction network for Snf1.
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cumulative distribution function. The Reporter Effector
analysis identified 22, 16, and 22 top-scoring (Po0.05)
effectors for the Dsnf1, Dsnf4, and Dsnf1Dsnf4 mutants,
respectively (Supplementary Table V; Figure 1G). Using
Reporter Effector analysis, we identified significant transcrip-
tion regulation hot spots within carbon, redox, global
transcription regulation, and nitrogen metabolism. This
analysis, for example, identified TFs that are known to be
regulated by Snf1 kinase (i.e., Cat8), as well as TFs that are
involved in redox, energy (Yap1, Skn7), nitrogen, and amino-
acid (Bas1) metabolism and that have not previously been
implicated as being regulated by Snf1 (Figure 2D; Supplemen-
tary Table V). Reporter Effector analysis identified that more
transcription regulation changes are happening in the
Dsnf1Dsnf4 mutant compared with single deletion strains
(Figure 1G). In particular, global regulatory factors, for
example the TF Gcn4, of nitrogen and energy metabolism
were identified only for the Dsnf1Dsnf4 strain. This points to
that in the double deletion strain there is stronger transcription
regulation, in particular in term of regulation of the nitrogen
metabolism.

Reporter metabolite analysis

Finally, we applied the Reporter Metabolite algorithm (Patil
and Nielsen, 2005) to our gene and protein expression data for
discoveringmetabolic hot spots that significantly responded to
the loss of Snf1 kinase activity (see Materials and methods)
(Figure 1D). Here, we queried a network comprising metabolic
interactions derived from a genome-scale metabolic model
consisting of 708 enzymes, 584 metabolites, and 1175
reactions (Forster et al, 2003). Each enzyme involved in this
graph was then scored based on the significance of the change
in the expression level of the corresponding gene or protein.
The 10 top-scoring metabolites were identified as reporter
metabolites. The reporter metabolites are those around which
transcriptional (Supplementary Table VI) or protein expres-
sion (Supplementary Table VII) changes are significantly
concentrated. Corroborating our analyses, the Reporter
Metabolite approach identified key changes within carbon,
energy (acetyl-CoA, succinate, glycogen, malonyl-CoA, long-
chain carboxylic fatty acids), and redox metabolism (oxidized
thioredoxin, NADþ /NADH) (Figure 2C), highlighting the
significant Snf1 involvement in controlling energy homeo-
stasis. There were differences in the identified reporter
metabolites, when mRNA or protein datasets were subjected
in the reporter metabolite analysis (Figure 1H-1 and H-2). For
example, more reporter metabolites within nitrogen metabolic
pathways were identified when mRNA was used compared
with the use of proteome data. Thus, corroborating with the
results of the Reporter Effector analysis, the reporter metabo-
lite analysis indicated significant transcription regulation
control within nitrogen metabolism (Figure 1H-1). More
abundantly, reporter metabolites within carbon and lipid
metabolism were identified only when protein dataset
was used (Figure 1H-2), which supports results of the DOGMA
sub-network analysis that indicates that the Snf1 kinase has a
function in posttranscriptional control of fatty acid and lipid
metabolism.

Metabolome profiling

Forty-four intracellular metabolites were quantified in the four
strains of the study. As collected metabolome dataset was
limited compared with complete yeast cell metabolome
profiling, our metabolome dataset was only used to support
the integrated data analysis. The collectedmetabolome dataset
is given in Supplementary Table VIII. The metabolome dataset
correlated well with the Reporter Metabolite analysis results,
for example indicating significant changes in amino acid and
energy (NADþ /NADH) metabolism for the double deletion
strain, and indicating significant changes inmostly carbon and
lipid metabolism for the Dsnf4 strain.

Differences and similarities of strains Dsnf1,
Dsnf4, and Dsnf1Dsnf4

This study is the first, in which the Dsnf1, Dsnf4, and
Dsnf1Dsnf4 strains were studied in parallel using several
high-throughput analytical techniques. The larger number of
significant changes identified on the transcriptome and
metabolome levels indicated that the double deletion strain
is different compared with the single deletion strains (Supple-
mentary Table 1). The double deletion strain was also shown
to have a different phenotype with respect to growth on
galactose (Usaite et al, 2008a) and it was also found earlier to
have a larger change in the proteome comparedwith the single
deletion strains (Usaite et al, 2008b). In this study, our four
data integration and analysis tools identified and demon-
strated strain-specific differences. Even though, the recon-
structed Snf1 regulatory networks seemed to be quite similar,
when derived based on the data for each of the Dsnf1, Dsnf4,
and Dsnf1Dsnf4 strains (Figure 2E; Supplementary Figures 1
and 2), some regulatory differences can be identified. The
Reporter Effector and Reporter Metabolite analysis identified
the most crucial differences among the three strains studied
(Figure 1G, H-1, and H-2). Reporter Metabolite analysis
indicated that deleting SNF4 gene affected mainly only carbon
metabolism (Figure 1H-1 and H-2). Unexpectedly, deletion of
both SNF1 and SNF4 genes induced changes in transcription
regulation and in particular in nitrogen metabolism (Figure
1G, H-1, and H-2). Overall, our data integration analysis
showed that the Dsnf1 and Dsnf4 strains are being more alike
whereas the double deletion Dsnf1Dsnf4 strain is behaving
differently. Our results indicated that deletion of both SNF1
and SNF4 genes cause a synergistic effect that is caused
changes in transcription regulation mechanisms and in
particular abundant changes in the regulation of nitrogen
metabolism (Figure 1G, H-1, and H-2). Our three-level ome-
data analysis approach demonstrated to be a good tool to
successfully characterize all strains of the study and identify
strain-specific differences.

Snf1 regulates carbon metabolism—validity
of our systems approach analysis

At the core of the Snf1 regulatory network (Figure 2E), there
are players known to be affected by Snf1, for example
components of the glucose repression system: Mig1, Hxk2,
and Cat8. For example, Cat8 regulates the glyoxylate cycle by
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controlling expression of the ICL1, MLS1, and MDH2 genes
(Schuller, 2003). Consistent with the importance of the Snf1–
Cat8 interaction, the expression of these metabolic genes,
their coding proteins, and the measured level of intracellular
glyoxylate were significantly lower in the Dsnf1 mutant
relatively to the wild-type strain (Po0.05) (Supplementary
Figure 3; Supplementary Tables VIII and IX) (and the double
deletion mutant). Overall, the results showed a high degree of
correlation for glucose repression related genes, their coding
proteins, and pathway metabolites (Supplementary Figure 3).
Our results correlates with prior knowledge of glucose
repression regulatory cascade studies (Gancedo, 1998; Schul-
ler, 2003) and reemphasize that transcriptional regulation is
the primary glucose repression control mechanism. These
results also validate our approach.
Corraborating with previous knowledge, our analysis also

identified that Snf1 kinase regulates energy storing pathways.
First, glycogen was identified as reporter metabolite
(Figure 2C; Supplementary Table VII) in Reporter Metabolite
analysis based on protein expression data. Glycogen synthase,
Gsy2, and its activity regulating Pho85 (Hardy et al, 1994)
were identified in DOGMA sub-network analysis as being
some of the most significantly changed network players
affected by the loss of Snf1 kinase activity (Figure 2E). Snf1
control of Msn2,4, which regulates the expression of GSY1
encoding glycogen synthase (Hardy et al, 1994; Unnikrishnan
et al, 2003), was also implicated (Figure 2E; Supplementary
Table IX). Overall, our three-level ome-data integrated analysis
results showed that energy storing pathways are down-
regulated through an Snf1-dependent mechanism.

Snf1 is shown as a low-energy checkpoint

Mammalian AMPK is described as a low-energy checkpoint
that mediates the energy state of the cell by regulating
catabolic and anabolic reactions, that is inducing energy
generating and repressing energy consuming reactions under
low energy (Hardie and Sakamoto, 2006). Recent reviews have
also implied that the yeast Snf1 protein kinase is a global
energy regulator (Polge and Thomas, 2007; Hardie, 2007b).
However, global evidence across multiple levels of the cellular
hierarchy has still been lacking. Our three-level ome-data and
systems-wide data analysis for the first time support this
hypothesis and demonstrates yeast Snf1 kinase being a global
energy regulator. A particular strength of our analysis is that
we compared the strains at carbon-limited growth conditions
in which the Snf1 protein kinase is supposed to be active,
whereas most other studies have used shake flasks where
there is normally carbon excess and the role of Snf1 protein
kinase is therefore relatively small.

Snf1 kinase regulates b-oxidation on protein level

High scoring sub-network analysis identified the most
significant factors associated with Snf1 to be Fox2, Acc1, and
Fas1 (Figure 2A and B). To explore how these pathways were
affected, we built a pathway model linking identified
significant changes across all measurement types (transcrip-
tome, metabolome, proteome) in Cytoscape (Shannon et al,
2003) (Figure 3). Using this model, it was possible for us to

identify a relatively complex regulatory system around lipid
metabolism. Genes and proteins (Cta1, Pox1, Fox2, and Pot1)
involved in b-oxidation had significantly (Po0.05) lower
expression in the three Snf1 kinase complex mutants relative
to the wild type. In agreement, quantitative metabolome
analysis showed that free fatty acids (oleic, palmitoleic,
myristic, palmitic, and stearic acid) accumulated in the Snf1
kinase complex mutants relatively to the wild-type strain,
rather than being catabolized by b-oxidation to generate
energy (Supplementary Table VIII). Thus, it is quite clear that
loss of Snf1 kinase complex activity leads to a decreased
activity in energy producing pathways such as b-oxidation.
Furthermore, our DOGMA and Reporter Metabolite analysis,
demonstrate that Snf1 kinase regulates fatty acid metabolism
through far more complex, that is using both protein–protein
interaction and regulation of carnitinemetabolism, rather than
only through transcriptional regulation of b-oxidation as
reported earlier (Young et al, 2002; Schuller, 2003).

Yeast Snf1 kinase controls carnitine transfer
system

Our systems approach analysis clearly demonstrated that the
carnitine transfer system in yeast are under the control of the
Snf1 kinase complex, even though no prior references
describing Snf1 control of this system have been reported for
yeast. First, it was found that Snf1 kinase interacts with the
carnitine transferase proteins Cat2 and Yat2 through the sub-
network analyses (both proteins were shown to have lower
protein and gene expression levels when the Snf1 kinase
complex was disrupted, Figures 2A and 3). Second, malonyl-
CoA and carnitine derivatives were identified as reporter
metabolites (indicating that significant changes in gene and
protein expression are centered around these metabolites)
(Figure 2C). It is found that the carnitine metabolic and
transfer system has a rate-limiting function in fatty acid
b-oxidation in humans and it is regulated by AMPK through
controlling the level of malonyl-CoA (Folmes and Lopaschuk,
2007). In yeast, b-oxidation is cytosolic, but still transport of
fatty acids across the mitochondrial membrane may have a
role in overall lipid metabolism and Snf1-associated regulation
at this level may therefore have an even wider role on global
regulation of lipid metabolism in yeast.

Snf1 kinase in control of fatty acid and lipid
biosynthesis

The DOGMA sub-network analysis identified lower expression
of de novo lipid biosynthesis involving Acc1, Fas1 (and Smp2),
when the Snf1 protein kinase complex mutants were
compared to wild-type cells (Supplementary Table IV;
Figure 2A). In addition, the metabolome analysis identified
increased levels of free fatty acids, serine, and glycine in the
Snf1 protein kinase mutants (Supplementary Table VIII;
Figure 3). Consistently with earlier results (Grauslund et al,
1999; Young et al, 2002), the expression of GUT1 coding for
protein catalyzing the formation of glycerol-3-phosphate (the
structural backbone of many lipids) was decreased, when Snf1
kinase complex was inactivated in the Dsnf1, Dsnf4, and
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Dsnf1Dsnf4 mutants (Figure 3; Supplementary Table IX).
Intuitively it could be misleading that there is an increased
level of the free fatty acids when there is transcriptional
downregulation of the biosynthetic genes, but our integrated
analysis allows a more global insight into the regulation of
fatty acid biosynthesis (see above discussion on downregula-
tion of b-oxidation). In this context it is interesting to mention
that the Snf1 protein kinase is known to inactive acetyl-CoA
carboxylase, a key enzyme catalyzing the entry into lipid
metabolism, and clearly there can be no inactivation of this
enzyme in the deletion strains. This could mean that despite
downregulation of Acc1 the fraction of the present enzyme that
is active may be higher in the deletion strains, which is further
supported by the fact that the phosphate Sit4, which activates
Acc1, is found to be more abundant in both the Dsnf1
(Figure 2E) and Dsnf4 (Supplementary Figure 1) strains. This
points to a quite complex regulation around the entry into lipid
metabolism, and solid conclusions on this regulatory node
would require a far more in-depth analysis of this node
involving detailed lipid analysis. However, the accumulation
of precursors for phospholipid biosynthesis points to a
downregulation of lipid metabolism, or at least loss of
coordinated regulation of this very complex biosynthesis.
As experiments were performed in carbon (energy)-limited

growth conditions, lower energy production through
b-oxidation, as a consequence of the inactivation of Snf1
kinase complex, should affect energy consumption in the cell.
Substantiating this hypothesis, we found that there was

repression of energy consuming (e.g., fatty acid and lipid
biosynthesis) pathways in themutants relative to thewild-type
strain (Figure 3; Supplementary Figure 3), and the net effect is
likely that there was a decreased flux into lipid biosynthesis in
the Snf1 protein kinase deleted strains.

Snf1 as a regulator of redox metabolism

Interestingly the GO molecular function category Oxidoreduc-
tase Activitywas enriched (hypergeometric test: P¼5E�07 and
6E�03) for both mRNA and proteins whose abundance was
found to be significantly changed. The systems analysis also
implicated multiple genes, proteins, and metabolites that
respond to redox change or are involved in redoxmaintenance
(Yap1, Skn7, Msn2,4, Bas1, Pho2, Ssa1, Hsf1, Gts1, Fas1, Fox2,
oxidized thioredoxin, NADþ/NADH, glutathione) (Figure 2;
Supplementary Tables III–VII). On the basis of an earlier
observed Yap1–Sip2 protein interaction (Wiatrowski and
Carlson, 2003), we suggested that the Snf1 protein kinase (in
complex with Sip2) may contribute to controlling redox
homeostasis directly through the TF Yap1 rather than through
global regulation of respiration and fluxes through key
catabolic pathways. Specifically, the significantly lower
expression was found among genes (e.g., CTT1, SOD1,
SOD2, GPX2) that are involved in maintaining the redox
balance and are regulated by oxidative stress through Yap1
(Supplementary Table IX). The data indicate that a lower
oxidative stress, thus, a less-induced oxidative stress defense
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Figure 3 The impact of Snf1 kinase on fatty acid metabolism shows its role as a global energy regulator. This figure comprises information of the yeast metabolic
network (Forster et al, 2003), the reconstructed Snf1 regulatory network, and raw mRNA, protein and metabolite abundance data for the Dsnf1 mutant compared with
the wild-type strain (Figure 2; Supplementary Tables VIII and IX). This figure shows that the loss of Snf1 activity results in reduced activity of energy producing reactions
(e.g., b-oxidation). Enzymes are mapped using protein (in diamonds) and mRNA (in small circles) expression data, which is colored according to log2-ratio color scale.
Available protein and metabolite relative abundance data are mapped on the regulators and metabolites, accordingly. Nodes with black borders have significantly
different (Po0.05) expression data for the Dsnf1 mutant versus the wild-type strain. Gray nodes represent components that were not measured. Five Snf1–protein
interactions (solid gray lines) were identified using sub-network analyses. Colored dashed lines indicate previously reported protein, transcriptional, and allosteric
regulations (Young et al, 2002; Schuller, 2003).
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system, is present in the mutants versus the wild type in this
study. This could be linked to the reduced oxidative activity in
the mutant strains as a consequence of the downregulation of
b-oxidation (Canto et al, 2009). Thus, again we conclude that
even though Snf1 has a key function in regulating lipid
metabolism, it needs also to regulate other parts of the
metabolism as alteration in lipid metabolism requires adjust-
ment in many other parts of the metabolism to ensure
metabolic homeostasis.

Summary

Collectively, our systems approach identified that energy
generating b-oxidation pathways, energy consuming fatty acid
synthesis, and energy storing and homeostasis pathways were
significantly affected by the loss of Snf1 kinase activity during
carbon-limited growth. This represents the first systems-wide
analysis using three types of high-throughput data formapping
the integrated nature and control that the Snf1 protein kinase
has in regulating these pathways. Our results clearly show that
Snf1 is mimicking the role of its orthologue AMPK in
mammalian cells as a low-energy checkpoint. Interestingly,
our analysis shows that Snf1 interacts with many pathways
thatmay also be linked to the protein kinase Tor1 (for example,
amino acid, energy and lipid metabolic pathways), and thus
our results suggest that Snf1 and Tor1 both have a role in
integrating information on the nutritional state and in concert
control energy and redox metabolism. Interestingly, our data
point to that the two components of the Snf1 protein kinase
complex Snf1 and Snf4 may interact with other proteins and
hereby exert additional functions. However, these functions
are quite consistent with the global role of the Snf1 protein
kinase, and we therefore speculate that without deleting both
the Snf1 and Snf4 sub-units there is not a full inactivation of
the protein complex.
We have combined global data measurements from three

levels of the cell (mRNAs, proteins, and metabolites) to
construct a regulatory map of Snf1 kinase. The regulatory map
reconstructed here identified new Snf1 targets and confirmed
previously described connections, validating the power of our
systems approach. Our analysis showed that Snf1 kinase
regulates multiple cellular pathways overall acting as a low-
energy checkpoint. Using our systems approach, novel Snf1
targets and their regulation on gene or protein level (in
response to the loss of active Snf1) were identified. The yeast
carnitine metabolic and transfer system was shown to be
controlled by the Snf1 kinase. Highlighting the importance of
measuring both mRNAs and proteins, Snf1 neighbors identi-
fied only in DOGMA sub-network analysis implied important
posttranscriptional regulation effects. For example, by only
identifying Acc1 in DOGMA analysis, our results indicate that
Acc1, which is phosphorylated and inactivated by Snf1 (Shirra
et al, 2001), is regulated on the protein synthesis and
degradation level by the Snf1 kinase complex. As Pho85 and
Gsy2 were also only identified as Snf1 first neighbors in
DOGMA sub-network analysis, combined gene expression and
protein level data indicate that posttranscriptional control
through Pho85 and Gsy2 regulates glycogen metabolismwhen
Snf1 kinase is inactive. Owing to the mode of action of Snf1
kinase activity, measuring both gene expression and protein

levels is an appropriate strategy for identifying regulatory
structure. Intracellular metabolome data were further used to
validate changes in metabolic pathways, which through our
network analysis were identified to be Snf1 controlled (e.g.,
glyoxylate as described above) (Figure 3; Supplementary
Figure 3). Measured free fatty acids (Supplementary Table
VIII) highlighted the importance of available metabolome data
and contributed to our understanding of role of Snf1 in
controlling lipid metabolism and energy homeostasis. Overall,
our results indicate the beneficial contribution of using
measurements from multiple cellular levels to reconstruct
regulatory networks. Our work strengthens the homology in
function between yeast Snf1 andmammalianAMPK and opens
the door for further using yeast as a model organism to study
AMPK and hereby use our reconstructed network as a scaffold
for better understanding and ultimately address metabolic
disorders in humans.

Materials and methods

Strains and cultivation

The S. cerevisiae strains used in this study were a prototrophic strain
CEN.PK 113-7D (MATa MAL2-8c SUC2) (Van Dijken et al, 2000), its
derivatives Dsnf1 and Dsnf4 supplied by Koetter (Frankfurt, Germany)
and Dsnf1Dsnf4 generated by Usaite et al (2008a). The only genotypic
difference among strains used is summarized in Supplementary Table I.
Steady-state aerobic chemostat cultures were grown at 301C in 2 l
bioreactors (Braun B) using a dilution rate of D¼0.100 (±0.005) h�1.
Chemostat cultivation ensured that metabolic and regulatory changes
observed were specific to disruptions of the Snf1 complex, and not
complicated by external effects resulting from the specific mutant
physiology (e.g., different growth rates). Detailed description of the
cultivations performed and the composition of the carbon-limited
minimal medium used was summarized earlier (Usaite et al, 2008b).
After steady state was reached, the cell samples for metabolome,
transcriptome, and proteome analyses were collected.

Transcriptome data acquisition

Samples for RNA isolation were taken from chemostat cultivations as
described earlier (Usaite et al, 2006). Total RNAwas extracted by using
a FastRNA Pro Red kit (BIO 101 Systems, Inc, Vista, CA). The cDNA
synthesis, cRNA synthesis, labeling, and cRNA hybridization on the
oligonucleotide array Yeast_2.0 (Affymetrix, CA) were performed as
described in the Affymetrix GeneChip expression analysis manual that
was downloaded from the Affymetrix website in October 2004. The
Yeast_2.0 arrays were scanned with the GeneChip 3000 7G Scanner.
The Affymetrix microarray suite v5.0 was used to generate CEL image
files of the arrays. The array images were then normalized and the
transcript levels of all S. cerevisiae probe sets were calculated with the
perfect-match model in dChip v1.2 (Li and Wong, 2001). The gene
expression data are available on the ArrayExpress. The accession
number is E-MEXP-1407.

Proteome data acquisition

Quantitative proteome datawere generated and described by us earlier
(Usaite et al, 2008b). Briefly, samples for total protein were collected
from chemostat cultivations, cells were lysed, and total protein was
extracted. Protein concentration per sample was determined, and
14N-labeled and 15N-labeled samples were mixed 1:1 by protein
weight. A total of 200mg of total protein was chemically modified and
digested by trypsin and endoproteinase LysC. The protein pool digest
was analyzed using MudPIT (Washburn et al, 2001). A tandem mass
spectrumwas analyzed and relative protein abundancewas quantified
using stable isotope labeling as described earlier (Venable et al, 2007;
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Usaite et al, 2008b). Complete list of proteins, for which abundances
were found to be significantly (Po0.05) changed (in the Dsnf1, Dsnf4,
and Dsnf1Dsnf4 versus wild-type strain), based on the stable isotope
labeling approach is available at http://pubs.acs.org as Supplemen-
tary information to Usaite et al (2008b).

Metabolome data acquisition

Cells from chemostat cultivations were rapidly quenched according to
de Koning and van Dam (1992). Cells were centrifuged at 10 000 g for
3min in �201C to separate the cells from the quenching solution.
Chloroform:methanol: buffer extraction and pure methanol extraction
(MEOH) were carried out (Villas-Boas et al, 2005a). Samples were
freeze dried at �561C using a Christ-Alpha 1–4 freeze dryer (Villas-
Boas et al, 2005b). Amino and non-amino organic acid levels were
determined by GC-MS analysis according to Villas-Boas et al (2005b)
except that a Finnegan FOCUS gas chromatograph coupled to single
quadrupole mass selective detector (EI) (Thermo Electron Corpora-
tion, Waltham, MA, USA) was used. Peak enumeration was conducted
with AMDIS (NIST, Gaithersburg, MD) with default parameters, and
identification of conserved metabolites was conducted with Spect-
Connect (Styczynski et al, 2007), using default parameters and a
support threshold of 3. As SpectConnect is unable to resolve
metabolite peaks that have similar MS spectra and are close in time,
hand curation of the AMDIS output files was also performed. Samples
were normalized by an internal standard chlorophenylalanine (30ml of
a 4mM solution was added before extraction) and by the biomass
weight per sample. The identified and quantifiedmetabolites are listed
in Supplementary Table VIII.

Reporter metabolite analysis

To identify metabolic hot spots that significantly responded to the Snf1
kinase complex disruption at the gene or protein expression level (Patil
and Nielsen, 2005), gene or protein expression changes in response to
SNF1 or SNF4 gene deletion were mapped on the genome-scale
metabolicmodel of S. cerevisiae (Forster et al, 2003). The genome-scale
model of yeast was first represented as a graph in which each
metabolite is connected to all enzymes that catalyze a reaction
involving that particular metabolite. Each enzyme involved in this
graph was then scored based on the significance of change in the
expression level of the corresponding gene or protein. This signifi-
cance score was calculated by using a t-test and the resulting P-value
was transformed to a Z-score using the inverse normal cumulative
distribution function. Each metabolite was assigned the average score
of its k neighboring enzymes, and this score was then corrected for the
background by subtracting the mean and dividing by the standard
deviation of average scores of 10 000 enzyme groups of size k selected
from the same dataset. These corrected scores were then converted
back to P-values by using the normal cumulative distribution function.
The 10 top-scoring metabolites were identified as reporter metabolites
and selected for the analysis in this study. Thus, the reporter
metabolites are those around which transcriptional (Supplementary
Table VI) or protein expression (Supplementary Table VII) changes are
significantly concentrated.

Reporter effector analysis

The Reporter Effector algorithm is an integrative method that
combines the topology of the regulatory network (effector—gene)
with gene expression levels, to identify those effectors (TFs, other
regulatory proteins) whose connected genes are most significantly
responsive as a group to a perturbation (Oliveira et al, 2008). Gene
expression for a total of 484 effectors and their 968 targets, and 3246
protein–DNA interactions collected from ChIP-chip experiments
(Hodges et al, 1999; Harbison et al, 2004) were used to perform
the Reporter Effector analysis. Each effector was scored based on
the average of scores of its adjacent genes (corrected for the size of
the group of connected genes), and the high scoring effectors
are termed Reporter Effectors. Reporter Effectors highlight the

regulatory pathways affected following a perturbation, and thus
uncover the functional links between the perturbation and the
consequent regulatory mechanisms invoked in the cell. Many TFs
and regulators do not respond at transcriptional level per se (but
through posttranslational regulation instead): Reporter Effector
analysis therefore provides a powerful tool for reconstruction of
regulatory circuits without a priori requirement of change in the
transcription level of the regulators. In this study, the Reporter Effector
analysis was performed three times (first using the complete gene
expression dataset, second using only genes with reduced expression,
and third using only genes with increased expression, having gene
expression datasets for any two-strain comparison) to account for
repressing, activating, or dual role having TFs. The top-scoring
reporter effectors (Po0.05) were selected (Supplementary Table V)
for the analysis in this study.

Sub-network analysis

To search for the high scoring sub-networks that describe highly
active regulatory modules of connected proteins and regulated
genes that are significantly changing in response to a perturbation,
we used the previously proposed simulated annealing algorithm
(Ideker et al, 2002) implemented with an additional heuristics: the
probability of a certain node being marked visible in the initialization
was proportional to (1�P-value). Briefly, the algorithm takes as
inputs a graph G (i.e., one of the interaction networks) and a list of
P-values (in this case, from a two-tail Student’s t-test, reflecting the
changes in transcript/protein levels between each mutant and
the reference strain). P-values are converted into z-scores using the
inverse cumulative distribution function. Z-scores are then mapped
into the graph, and the score of a given sub-network SG is calculated as
the average sum of all node elements of SG, corrected for background
and for the size of SG. To find the highest score sub-network, a
simulated annealing algorithm is used. As referred by Ideker et al,
and because the problem of finding the highest score connected
sub-network is NP-hard, it is not guaranteed to find the overall
maximum using this algorithm (Ideker et al, 2002; Bioinformatics).
Therefore, each pair of network/data was analyzed 10 times, and
we use the results obtained from merging the 10 high scoring sub-
networks.

Here, a large network comprising 57 680 protein–protein interac-
tions and 10 884 protein–DNA interactions was used for this analysis.
From the BioGRID database (BIOGRID-Saccharomyces_cerevisiae
v.2.0.25), a downloaded list of protein–protein interactions was
curated by removing duplicated information and by selecting protein
physical interactions generated using Affinity Capture-MS, Affinity
Capture-RNA, Affinity Capture-Western, Biochemical Activity,
Co-crystal Structure, Co-fractionation, Co-localization, Co-purifica-
tion, FRET, Far Western, Protein-RNA, Protein-peptide, Reconstituted
Complex, and Two-hybrid methods. This resulted in obtaining 57 680
protein–protein interactions, covering 3868 unique proteins. A total of
10 884 high-confidence (P-value o0.001) protein–DNA interactions
derived from ChIP-chip data (Harbison et al, 2004) were included in
high scoring sub-network analysis.

DOGMA sub-network analysis

This analysis contained three types of interactions: protein–protein,
protein—DNA, and ‘mRNA to protein’ translation interactions. As we
quantified both mRNA and protein abundances, the network of bio-
molecular interactions was extended to accommodate both changes in
transcript and protein levels. Namely, we had a chance to expand
network analysis including the translational relationship between each
transcript i and the corresponding protein i. Changes in proteome
levels were used to score protein nodes, whereas transcriptome data
were used to score gene nodes. Therefore, the resulting high scoring
DOGMA sub-networks showed connected circuits being significantly
regulated at gene, translation and protein levels. First Snf1 kinase
neighbors (Snf1-interacting proteins) that were identified using
DOGMA sub-network (Supplementary Table IV) were subjected in
more detail analysis of this study.
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Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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