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ABSTRACT Efficient and accurate protein synthesis is crucial for organismal survival in competitive
environments. Translation efficiency (the number of proteins translated from a single mRNA in a given time
period) is the combined result of differential translation initiation, elongation, and termination rates.
Previous research identified the Shine-Dalgarno (SD) sequence as a modulator of translation initiation in
bacterial genes, while codon usage biases are frequently implicated as a primary determinant of elongation
rate variation. Recent studies have suggested that SD sequences within coding sequences may negatively
affect translation elongation speed, but this claim remains controversial. Here, we present a metric to
quantify the prevalence of SD sequences in coding regions. We analyze hundreds of bacterial genomes and
find that the coding sequences of highly expressed genes systematically contain fewer SD sequences than
expected, yielding a robust correlation between the normalized occurrence of SD sites and protein
abundances across a range of bacterial taxa. We further show that depletion of SD sequences within
ribosomal protein genes is correlated with organismal growth rates, supporting the hypothesis of strong
selection against the presence of these sequences in coding regions and suggesting their association with
translation efficiency in bacteria.
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Translation of mRNA to protein consumes a vast amount of
cellular resources, particularly in rapidly growing unicellular or-
ganisms (Dekel and Alon 2005; Wagner 2005; Shachrai et al.
2010). Many researchers have hypothesized that efficient (i.e., fast
and accurate) translation is highly advantageous and should
therefore leave a recognizable signature on the genome (Sharp
et al. 2005; Stoletzki and Eyre-Walker 2007; Drummond and
Wilke 2008; Supek et al. 2010; Vieira-Silva and Rocha 2010;
Botzman and Margalit 2011).

For decades, researchers have focused on understanding the link
between tRNA concentration and translation rates of cognate codons,
under the assumption that ribosomaldwell-timeonaparticular codon is
partially determined by diffusion limited tRNA binding and competition
between near-cognates (Ikemura 1981; dos Reis et al. 2004; Rocha
2004). Indeed, multiple lines of evidence strongly support this hy-
pothesis in a multitude of different organisms (Tuller et al. 2010).

Recently, ribosome profiling (a technique that maps transcriptome-
wide ribosome occupancy) has been applied to study whether different
codons show variation in translation rates, but researchers have come to
conflicting conclusions, even when using the same dataset (Li et al. 2012;
Dana and Tuller 2014; Gardin et al. 2014; Hussmann et al. 2015;
Weinberg et al. 2016). One of the most startling findings to emerge from
ribosome profiling experiments is the striking degree of heterogeneity in
ribosome occupancy across mRNAs, which is punctuated by large peaks
suggestive of “pausing” or “stalling” (Ingolia et al. 2009; Li et al. 2012;
Schrader et al. 2014). These pauses, in contrast to known stalling se-
quences, are orders of magnitude larger than what is expected from basal
translation rate variations due to tRNA concentrations, and may instead
result from nascent peptide interactions within the ribosomal exit tunnel
(such as poly-proline sequences), ribosomal queuing, or trans-interactions
betweenmRNA and ribosomes (Li et al. 2012; Charneski and Hurst 2013;
Shah et al. 2013; Woolstenhulme et al. 2015; Weinberg et al. 2016).
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Using ribosome profiling, Li et al. (2012) showed that, in bacteria,
translational pauses were significantly associated with sequence binding
between the anti-Shine-Dalgarno (aSD) sequence of the 16S ribosomal-
RNA and the translating message. This binding interaction is important
during the process of translation initiation, where the ribosome binds to
the 59 untranslated region (59-UTR) to facilitate start codon recognition
(Figure 1A). However, the occurrence of these “Shine-Dalgarno” (SD)
sequences within coding sequences had not been previously associated
with translational pausing (Shine and Dalgarno 1974; Salis et al. 2009).
SD sequence-mediated pauses have now been documented for several
bacterial species and independent ribosomal profiling datasets (Li et al.
2012; Liu et al. 2013; Schrader et al. 2014). Studies have built on these
results by showing SD-associated pauses in vitro, negative effects of SD
sequences on protein production in engineered sequences, enhanced
solubility of recombinant proteins via rational insertion of SD sequences
at protein domain boundaries, and enrichment of SD sequences following
transmembrane domains of natural sequences (Agashe et al. 2013; Chen
et al. 2014; Chevance et al. 2014; Fluman et al. 2014; Vasquez et al. 2015).

By contrast, recent results have questioned whether the observed
SD-associatedpauses are actually anexperimentalartifact resulting from
the ribosome profiling protocol, specifically the differential sizes of
sequencing fragments (O’Connor et al. 2013; Mohammad et al.
2016). Indeed, the existence of SD-mediated pauses has not been con-
firmed using several other experimental methods (Borg and Ehrenberg
2015; Chadani et al. 2016; Mohammad et al. 2016). Thus, remains
unclear what role, if any, SD sequences within protein coding genes
have in modulating translation speed (Figure 1B).

Even though the usage and diversity of SD sequences within the 59-
UTR has been analyzed extensively at the genome-scale (Ma et al. 2002;
Starmer et al. 2006; Nakagawa et al. 2010), the occurrence pattern of these
important sequencemotifs within the coding sequences of diverse species
has been largely neglected [though see Itzkovitz et al. (2010) for an
exception]. Thus, open questions remain as to whether SD sequences
are indeed systematically depleted within coding sequences from diverse
species and, if so, whether the depletion follows any particular pattern
thatmay provide clues to the evolutionary significance of these sequences.

Inorder toanswertheseopenquestions,wesought tocharacterizethe
general occurrenceof SDsequenceswithin protein codinggenes across a
range of bacterial species of known phylogeny.We first present ametric
to characterize single mRNA sequences according to their estimated
sequence binding propensity with the ribosomal aSD sequence. Using
thismetric,we showthatdepletionof SDsequences in coding regions is a
hallmark of bacterial genes and that, within a given species, the degree of
this depletion is inversely correlated with measured gene expression
levels. Finally, we show that variation in SD sequence depletion between
different genomes is related to the minimal known doubling time of
individual species, suggesting that depletion of SD sequences is driven
by evolutionary pressure for greater translation efficiency.

MATERIALS AND METHODS

Codon-shuffled null model
We randomly generated null model genomes that preserve codon usage
and primary amino acid sequence at the gene level. For each gene, we
constructed a list of all codons used in the original sequence. Given the
primary amino acid sequence of the gene, we then randomly selected a
codon from the pool of available synonymous codons for that particular
amino acid without replacement. The start and stop codons are not
affected by this process and thus remain fixed during the shuffling
process.Werepeated thisprocedure for everygenewithinagivengenome
in order to create one instance of a randomized genome for null model

comparison. For statistical comparison using Monte Carlo hypothesis
testing, we created 1000 randomized genomes in this manner. Using our
metric, we calculated themean and SD in these randomized genomes for
each organism, and then calculated a z-score for the real genome along
with the resulting p value, which we report in the main text.

aSD hybridization
We predicted thermodynamic interactions between the aSD sequence
and each six-nucleotide-long sequence using the RNAcofoldmethod of
the ViennaRNA Package 2.0 with default parameters (Gruber et al.
2008). For this study, we have chosen to use the canonical core aSD
sequence of 59-CCUCCU-39 for all species, owing to the fact that this
core sequence is nearly universally conserved. Further, the 39-tail of 16s
rRNAs is slightly variable and poorly annotated (Nakagawa et al. 2010;
Lim et al. 2012), making it difficult to empirically determine the precise
aSD sequence for each individual species.

Pax-Db data collection
We collected the complete bacterial dataset from the Protein Abundance
Across Organisms Database (Pax-Db) in August 2015 (Wang et al.
2015). This resource contains protein abundance measurements for
26 different bacteria. When multiple datasets were available for a par-
ticular organism, we chose the “Integrated” dataset, which is the result

Figure 1 The possible dual impacts of Shine-Dalgarno (SD) sequences
on protein synthesis. (A) SD sequences in the 59 untranslated region
(UTR) of mRNA (messenger RNA) are known to facilitate translation
initiation in bacteria via binding to the anti-SD sequence on the 39 tail
of the 16S ribosomal RNA. (B) Recent research suggests that SD se-
quences within coding sequences may regulate the rate of translation
elongation.
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of Pax-Db curators integrating the various protein abundance data
sources based on coverage and quality. The full set of data that we
analyzed for each species is available upon request.

Growth-rate dataset and phylogenetic relatedness
We obtained growth rate measurements (minimum doubling time,
measured in hr) from Vieira-Silva and Rocha (2010). For each
species in their data table, we matched the name of the species
provided in the original data source to the species name in a local
copy of the NCBI GenBank complete genome sequences. This
resulted in 187 matches for bacteria (Archaeal species, which were
provided in the original dataset, were ignored for the purposes of
this study). Within each of these bacterial genomes, we relied on
annotations in the GenBank files to find ribosomal proteins by
searching the “product” field for “ribosomal subunit,” or perturba-
tions thereof. Full data, including GenBank files for all relevant
organisms and ribosomal protein “locus_tags” used in this study,
are available upon request.

To construct a phylogenetic tree from these species, we extracted the
23S and 16S gene sequences using RNAmmer-1.2 (Lagesen et al.
2007). When multiple sequences were available for a given genome,
we randomly chose one of each for alignment. We then individually
aligned 23S and 16S sequences using MUSCLE (Edgar 2004). Finally,
we concatenated the 16S and 23S alignments for each organism and
constructed a maximum likelihood (ML) tree using RAxML with a
partitioned analysis that separately fit rate models for the 16S and 23S
sequences. We used a 59-GTRGAMMA-39 evolutionary model with
100 rapid bootstrap searches and 20ML searches and selected the best
fitting ML tree. (Stamatakis 2014).

Regression analyses
With one exception noted below, all statistical analyses were performed
using the SciPy (version: 0.16.0) and StatsModels (version: 0.6.1)
packages in Python.

To control for phylogenetic effects in our growth rates regression
analysis, we used the PGLS function from the “caper” package in R,
choosing the optimal l value to transform our input tree via maximum
likelihood search.

Data availability
The authors state that all data and code necessary for confirming the
conclusions presented in the article are available as Supplementary
Material (Table S3).

RESULTS

Quantifying the occurrence of SD sequences within
coding sequences
We first counted the number of occurrences of the canonical SDmotif (59-
AGGAGG-39) within the coding sequences of the 187 bacterial species
compiled by Vieira-Silva and Rocha (2010). For each genome, we com-
pared the number of SD sequences found within coding sequences to the
number expected by chance using a codon-shuffled nullmodel to control
for codon usage bias within each gene (seeMaterials and Methods). We
found that 175 out of 187 genomes contained fewer canonical SD se-
quences in their coding sequences than expected by chance (154 were
significant at p, 0:0001; Monte Carlo hypothesis testing, Figure 3A).

However, single or multiple base mismatches to the canonical SD
sequence are frequently assumed to be functional in translation initi-
ation, and the strength of aSD sequence binding to different hexamer
sequences spans a range of values. To quantify the occurrence of SD
sequences on a per-gene basis in a manner that encapsulates the full

Figure 2 Quantifying aSD sequence binding within coding regions.
(A) We estimate the free energy of binding for each hexamer within a
gene to the core aSD (anti-Shine-Dalgarno) sequence (59-CCUCCU-39).
(B) Free energy (top) and affinity (bottom) profiles for a typical E. coli
gene (b3055). The affinity profile amplifies the contribution from
strongly binding regions within the gene. nt, nucleotides. Figure 3 Depletion of SD occurrence in genomes compared to

expectation from 1000 randomly generated genomes using our
codon-shuffled null model. (A) the canonical SD (Shine-Dalgarno)
sequence 59-AGGAGG-39 is depleted within coding sequences in
most genomes (175 of 187). (B) The genome aSD (anti-SD) binding
score Sgenome is lower for most organisms (172 of 187). Both distribu-
tions are centered significantly to the left of 0, showing that the ma-
jority of organisms avoid SD sequences according to both metrics.
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breadth of this heterogeneity, we estimated the free energy of binding
between the aSD sequence and each hexamer within the coding region of
each mRNA (Figure 2A, see Materials and Methods for details). Since
the free energy of binding (DG) at a particular site is proportional to the
logarithm of the ratio of the association and dissociation rate constants
of binding, we define the affinity A of a hexamer fn1 . . . n6g to the
aSD sequence as:

Afn1...n6g[exp
���DGfn1;...;n6g

��� (1)

We define the aSD binding score S of a gene as:

Sgene[log�A; (2)

where �A is the average affinity over a gene’s coding sequence (Figure
2B). The transformations involved in the definition of S aim to lessen
the contribution of weak-binding interactions while amplifying the
contributions from the strongest aSD binding sequences.

We calculated Sgene for each of the coding sequences of 187 bacterial
species, and define genome aSD binding score Sgenome ¼ �Sgene: We
again compared this empirical value to the expected value for a given
genome based off a codon-shuffled null model and found that, similar
to the previous analysis, 172 out of 187 genomes had average aSD
binding scores lower than expected by chance (167 were significant at
p, 0:0001; Monte Carlo hypothesis test, Figure 3B). These results
demonstrate that genomes contain significantly fewer SD sequences
than would be expected from gene-specific codon usage biases and
amino acid sequences.

The occurrence of SD sequences in coding regions
correlates negatively with Escherichia coli gene
expression data
Sgene allows us to test whether variation in aSD sequence binding be-
tween different genes correlates with gene-level features such as expres-
sion level. We obtained five genome-scale expression datasets for E. coli
to ensure the robustness of our results (Table S1) and correlated the
gene expression measurements against the calculated aSD binding
score for each gene (Figure 4A) (Lu et al. 2007; Taniguchi et al. 2010;
Shiroguchi et al. 2012; Li et al. 2014). We observed a highly significant
negative relationship in all datasets, indicating that the coding se-
quences of highly expressed genes contain fewer SD sequences
(p, 10218; for all cases) (Figure 4, A and B).

A number of different factors are known to influence protein
abundances, including start codon choice, mRNA structural accessibil-
ity, andSDsequenceusageat translation initiationsites (Guimaraesetal.
2014). Here, we wish to focus on the elongation phase of translational

control to determine what, if any, additional predictive power is con-
ferred by the effect of aSD sequence binding within coding sequences.
Prior studies have established that the codon usage bias of individual
genes is highly correlated with protein levels (Tuller et al. 2010). In
order to investigate whether the observed correlation between Sgene and
gene expression is driven solely by codon usage bias, we conducted
multivariable linear regression using both S and an established method
for quantifying codon usage bias to predict expression levels (Nc9)
(Novembre 2002). If S were solely a consequence of codon usage bias,
the adjusted-R2 (R2

adj) should decrease when S is included as an in-
dependent variable along withNc9:On the contrary, we observe that the
best model for all datasets includes both Nc9 and S as predictors of
expression (Figure 4B and Table S1). While the enhancement in pre-
dictive power is not additive, this is not uncommon when evaluating
models with multiple covarying predictors.

The occurrence of SD sequences within coding regions
correlates negatively with protein abundances in
diverse bacterial taxa
To determine the generality of the previous finding, we expanded our
analysis to 26 diverse bacteria for whom protein expression data were
previously collected byWang et al. (2015) (seeMaterials andMethods).
For 19 out of 26 datasets, we observed that Swas significantly negatively
correlated (p, 0:01) with protein abundances (Figure 5 and Table S2).
As in the previous subsection, we also implemented a multivariate
model to determine whether the observed correlation was solely a
consequence of codon usage bias. For 23 out of 26 datasets we saw
an improved R2

adj value when Sgene is added as a predictor along with
estimates of codon usage bias (Figure 5).

We further confirmed the observation that the more complex
multivariate model resulted in a better fit to the data by using AIC
and BIC to evaluate model fits. For 22 and 18 organisms, respectively,
the multivariate model provided a better fit to the data than a linear
model based on codon usage bias alone (Figure S1).

Ribosomal protein coding sequences contain fewer SD
sequences than other genes
To overcome the limited availability of bacterial protein expression
datasets, we next investigated whether ribosomal protein coding se-
quences contain fewer SD sequences than other genes within a genome.
Ribosomal proteins are essential for all organisms and they are generally
expressed at high levels, making them some of the most likely genes to
show selection for accurate and efficient translation.

In E. coli, we observed that aSD binding scores for the 58 ribosomal
protein genes are significantly lower than that of all other genes

Figure 4 aSD binding scores negatively correlate with
gene expression in E. coli. (A) An example dataset
showing negative correlation between protein abun-
dance and aSD (anti- Shine-Dalgarno) binding scores
for individual E. coli genes (R2

adj ¼ 0:175; p,10218).
Specifically, coding sequences containing fewer SD se-
quence motifs have higher protein abundances. (B)
Multivariate regression shows that expression changes
cannot be fully explained by codon usage bias, and that
additional predictive power is offered by Sgene: We
chose five datasets that provide independent measure-
ments of mRNA (messenger RNA), protein, and trans-
lation efficiency levels in order to test the robustness of
our findings (Lu et al. 2007; Taniguchi et al. 2010;
Shiroguchi et al. 2012; Li et al. 2014).

3470 | C. Yang et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/g3journal/article/6/11/3467/6031126 by Stanford U

niversity user on 09 O
ctober 2024

http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.116.032227/-/DC1/TableS1.pdf
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.116.032227/-/DC1/TableS1.pdf
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.116.032227/-/DC1/TableS2.pdf
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.116.032227/-/DC1/FigureS1.pdf 


(Figure 6A). To quantify the magnitude of this difference, we define
the normalized SD bias within a genome, BSD; as:

BSD ¼
�Sribosome  genes 2�Sgenome

�Sgenome
· 100% (3)

where �Sribosome  genes is the averaged Sgene for ribosomal protein coding
genes, and �Sgenome is the averaged Sgene for all genes within a genome.
When BSD , 0; ribosomal protein genes contain fewer SD sequences
than would be expected based on the genome-wide average. We opt
for this approach for two primary reasons. First, the S values of
ribosomal protein coding genes themselves would be heavily influ-
enced by the underlying genomic GC content. Normalizing to the
genome-wide average should help to mitigate this effect. Second, re-
search has shown that at higher growth rates, ribosomal protein genes
make up an increasingly larger fraction of bacterial proteomes
(Borkowski et al. 2016). Thus, relative differences in S between ribo-
somal protein coding genes and the genome as a whole should reflect
the selective pressure for increased ribosomal protein production
during periods of rapid growth.

Of the other 187 diverse bacteria spanning different genomic GC
contents, growth environments, and growth rates, 173 have BSD, 0;
suggesting that the vast majority of bacteria have a larger depletion of
SD sequences in their ribosomal protein coding genes relative to the
genome as a whole (Figure 6B). The systematic depletion of SD se-
quences in ribosomal protein coding sequences further suggests that
thesemotifs negatively impact gene expression and/or cellular fitness in
a wide diversity of bacteria.

Previous studies have shown that the relative codon usage bias of
ribosomal genes compared to the rest of the genome is correlated with
theminimumobserved doubling time for particular speciesVieira-Silva
and Rocha (2010). This finding is mechanistically assumed to be a
consequence of the fact that, at rapid growth rates, ribosomal proteins
constitute an increasingly large fraction of the proteome; selection for
translational accuracy or efficiency within these genes relative to the
genome thus likely reflects the evolutionary history driven by growth
rate demands. Therefore, we hypothesized that BSD scores may also be

related to the growth rate demands of individual species. Indeed, we
found that BSD is positively correlated with the minimum known dou-
bling times of this set of 187 bacteria; fewer SD sequences within the
ribosomal protein coding sequences relative to the genome is associated
with faster maximal growth rates (Spearman-rank: r ¼ 0:530;
p, 10214) (Figure 6C). We further confirmed the robustness of this
finding via phylogenetic generalized least squares regression (see Ma-
terials and Methods) (l ¼ 0:978 : R2

adj ¼ 0:07; p ¼ 0:0002). This find-
ing strongly suggests that SD motifs within coding sequences are
detrimental to growth and reproduction, likely via negatively impacting
translation.

DISCUSSION
Prior research into translation elongation has focused on codon usage
as the primary means of modulating elongation speed, but researchers
have recently proposed that aSD-mediated sequence interactions are a
dominant sourceof translational pausing inbacteria (Gingold andPilpel
2011; Li et al. 2012). If true, this finding has important consequences for
our understanding of the basic mechanisms of translation as well as
practical implications for coding sequence design for synthetic biology
and biotechnological purposes. By quantifying the usage of SD se-
quences within coding sequences in a diverse set of bacterial taxa, we
have shown a consistent trend whereby SD sequences within coding
regions are systematically depleted. Specifically, this effect is strongest
in the most highly expressed genes across a variety of genomes. We
further show that the level of biased depletion of SD sequences is
strongest in organisms capable of very rapid growth where selection
for translation efficiency has previously been shown to produce a va-
riety of genome-scale hallmarks (Vieira-Silva and Rocha 2010).

Recently, Diwan andAgashe (2016) published an elegant analysis of
“internal-SD-like” sequence usage in prokaryotes. Our results largely
confirm the major finding of this study, which showed internal-SD-like
sequences are depleted in . 80% of the species analyzed. While their
results found a number of species that were exceptions to this rule, we
note that many of these exceptions are Archaea, whose translation
initiation mechanisms remain elusive and are therefore excluded from
our analysis. Further, our results build on these findings in important
ways. By developing a metric of S, which is defined at the single-gene
level, our analysis provides insight into within-genome variation and
the selective pressures governing the usage of internal-SD sequences as
it relates to gene expression costs. This within-genome analysis allows
us to show that avoidance of SD sequences is highly related to the
maximal growth rates of organisms using a method that controls for
GC content variation, which Diwan and Agashe (2016) found to im-
pose an important constraint on the appearance of internal-SD se-
quences. Our analysis does not focus on temperature or variation in
internal-SD usage with regard to position within genes, but the thor-
ough results of Diwan andAgashe (2016) likely hold within our dataset.

There are several possible limitations to our methodology that
readers should be aware of when interpreting our findings. First, our
study relies on an assumedaSD sequence of 59-CCUCCU-39 to calculate
aSD binding strength scores for individual genes. It is possible, and
evidence strongly suggests, that in particular lineages the aSD sequence
may be slightly altered or extended compared to this canonical se-
quence (Lim et al. 2012). Therefore, we may be mischaracterizing the
aSD sequence for several species in our dataset, or not encompassing
the full breadth of possible sequence interactions. Future work can
refine our findings to account for this aSD heterogeneity as more
aSD sequences will be empirically determined, but we opt here for a
conservative approach likely to be applicable for the majority of
organisms in our dataset. Second, while our study relies on the precise

Figure 5 Shine-Dalgarno (SD) sequence depletion is correlated with
protein abundances in a diverse set of bacterial taxa. Distribution of
differences between the R2

adj for models which do and do not contain
the S score. For 23 of the 26 organisms, inclusion of aSD (anti-SD)
binding score as an independent variable enhances predictive power.
The full data table, including organism names and values, is available
in Table S2.
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definition of coding sequence bounds in existing genome annotations,
prior research has shown that these annotations are likely spurious for
up to �10% of annotated genes (Schrader et al. 2014; Nakahigashi
et al. 2016). However, reliable N-terminal mapping is currently avail-
able for only a small fraction of bacterial genomes; until better com-
putational models are developed to refine translational start site
predictions, this will remain a limitation that adds noise to any com-
putational genome-scale analysis, such as the one we perform here.

SD sequences may be avoided within coding sequences for several
different, and nonmutually exclusive, reasons. These sequences may: (i)
result in erroneous internal translation initiation leading to the pro-
duction of truncated protein products; (ii) temporarily sequester ribo-
somes, thus limiting the number available for proper translation
initiation; (iii) encourage translational frameshifting; or (iv) substan-
tially slowdown translation elongation (Devaraj andFredrick2010;Chu
et al. 2011; Li et al. 2012; Whitaker et al. 2014). In all of these cases, we
would expect SD sequences within coding sequences to be largely
detrimental and thus avoided. In particular, given that the conse-
quences of any of the above explanations is amplified by high mRNA
copy numbers, avoidance of these SD sequences would also be expected
to manifest particularly in the most highly expressed genes.

Although our results indicate that SD sequences are by and large
detrimental, we also wish to clarify that some proportion of the SD sites
within coding sequences may serve important functions. Owing to the
compact nature of bacterial genomes, the translation initiation site of
many genes within operons will occur within the 39 terminus of the
preceding coding sequence. Further, the presence of multiple trans-
lation initiation sites may serve a regulatory role for certain proteins,
allowing for the production of distinct isoforms depending on the
N-terminal sequence or controlling protein folding rates (Ozin et al.
2001; Fluman et al. 2014; Schrader et al. 2014; Vasquez et al. 2015).

One benefit of our large-scale analysis is that exceptions to the rules
can point to interesting cases for further study. In Figure 5 we found
three species where S did not appear to enhance predictions of protein
abundance:Mycoplasma pneumoniae, Shigella flexneri, and Leptospira
interrogans. Although none of these species are known to use non-

canonical aSD sequences (Lim et al. 2012), all are pathogenic species,
suggesting that a possible relationship may exist between ecological
strategies, effective population size, and the selection against SD se-
quences. However, owing to the large number of pathogenic species
in this dataset, this finding will require further detailed investigation.
Additionally, several species analyzed in Figure 6 showed an enhance-
ment of SD sequence usage within ribosomal proteins relative to the
genome. Nearly all of these cases come from three distinct orders
(phyla), pointing to likely mechanistic changes in the aSD interaction
in particular clades: Rickettsia (Alphaproteobacteria), Mollicutes (Ten-
ericutes) and Spirochaetes (Spirochaete) (both M. pneumoniae and
L. interrogans, mentioned above, fall within one of these orders). Future
ribosome profiling experiments on species from within these clades
may provide clues on the evolution of the aSD sequence interaction.

The patterns that we observe provide significant insight into the
debate surrounding the usage of SD sequences within protein coding
genes. Moreover, our results are fully orthogonal to ribosome profiling-
based conclusions. It is clear from this bioinformatic analysis that SD
sequences are largely avoided across the bacterial kingdom, and that this
avoidance is likely due to deleterious effects on translation. Thus, we
conclude that even if SD-mediatedelongationpausing is anartifactof the
ribosomal profiling protocol, as suggested by Mohammad et al. (2016),
care should be taken to avoid SD sequences when designing coding
sequences for recombinant protein production applications.
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Figure 6 Depletion of SD (Shine-Dalgarno) sequences
within ribosomal protein coding genes is widespread
throughout the bacterial kingdom and associated with
organismal growth. (A) Distribution of aSD (anti-SD)
binding scores of ribosomal protein coding sequences
in E. coli, compared to that of all other protein coding
sequences. We characterize SD sequence usage bias in
a genome with Equation (3). (B) Distribution of genome
SD bias index for 187 bacteria genomes. Ribosomal
proteins have significantly lower aSD binding scores,
as compared to the rest of the genome, in the majority
of bacterial species. (C) SD bias is correlated with min-
imum generation time in 187 organisms (Spearman-
rank: r ¼ 0:530; p, 10214). Depletion of internal-SD
sequences in ribosomal protein genes is associated
with faster growth. The full data table for this analysis,
including organism names, growth rate, and B values, is
provided as (Table S3).
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