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Accelerated enzyme engineering by
machine-learning guided cell-free expression

Grant M. Landwehr1,2,4, Jonathan W. Bogart1,2,4, Carol Magalhaes1,2,
Eric G. Hammarlund1,2, Ashty S. Karim 1,2 & Michael C. Jewett 1,2,3

Enzyme engineering is limited by the challenge of rapidly generating and using
large datasets of sequence-function relationships for predictive design. To
address this challenge, we develop a machine learning (ML)-guided platform
that integrates cell-free DNA assembly, cell-free gene expression, and func-
tional assays to rapidly map fitness landscapes across protein sequence space
and optimize enzymes for multiple, distinct chemical reactions. We apply this
platform to engineer amide synthetases by evaluating substrate preference for
1217 enzyme variants in 10,953 unique reactions. We use these data to build
augmented ridge regression ML models for predicting amide synthetase var-
iants capable of making 9 small molecule pharmaceuticals. Over these nine
compounds, ML-predicted enzyme variants demonstrate 1.6- to 42-fold
improved activity relative to the parent. Our ML-guided, cell-free framework
promises to accelerate enzyme engineering by enabling iterative exploration
of protein sequence space to build specialized biocatalysts in parallel.

Engineered enzymes are poised to have transformative impacts across
applications in energy1, materials2, and medicine3. To create such
enzymes, a protein’s amino acid sequence is changed to enhance
native function or facilitate new chemical reactions. This process
typically involves identifying enzymes with natural plasticity and pro-
miscuity for the reaction of interest, followed by using directed
evolution4,5. Unfortunately, current approaches to directed evolution
are limited because they can often only map sequence-function rela-
tionships in a narrow region of sequence space. For example, screen-
ing strategies are generally low throughput, which constrains re-
samplingmutations in iterative site saturationmutagenesis campaigns
and can miss epistatic interactions that capture beneficial pairwise (or
greater) synergies when the single mutations are neutral or even
detrimental6. Additionally, selection methods for directed evolution
focus on “winning” enzymes for a single transformation, which limits
the ability to collect positive and negative sequence-function rela-
tionships for forward engineering of similar reactions7.

Computational technologies have emerged to accelerate existing
directed evolution approaches. De novo protein design can create
new-to-nature enzymes, but the diversity of chemistries and

applications remains limited8–10. Machine learning (ML) models have
been used to discover enzymes by inferring fitness based on related
homologs and/or protein sequences from all organisms (a so-called
zero-shot prediction) as well as to navigate protein-fitness landscapes
based on assayed fitness data (e.g., nonlinear regression using site-
specificone-hot encodings)11–13.WhileML-assisted enzymeengineering
methods show promise, rapidly building datasets to navigate vast
sequence space remains a challenge14, especially considering most
genotype-phenotype links are lost in high-throughput enzyme engi-
neering campaigns15.

Here, we developed a high-throughput, ML-guided approach to
enable exploration of fitness landscapes across multiple regions of
chemical space for forwarddesign of biocatalysts (Fig. 1). A key feature
of our approach is theuseof cell-free gene expression (CFE) systems to
allow for the rapid synthesis and functional testing of proteins16–21 in a
design-build-test-learn (DBTL) workflow. This framework first maps
sequence-function relationships for enzyme variants with single-order
mutations for a specific chemical transformation identified from an
evaluation of enzymatic substrate promiscuity. Then, these data are
used to fit supervised ridge regression MLmodels augmented with an
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evolutionary zero-shot fitness predictor and extrapolate higher-order
mutants with increased activity. Importantly, the ML models can be
run on the central processing unit of a typical computer making our
entire approach user-friendly and accessible. Our method offers a
compliment to the growing toolbox of directed evolution strategies,
such as those that predict catalytic features of enzymes22–24.

We applied our framework to carry out divergent evolution,
converting an amide bond-forming generalist enzyme into multiple,
distinct specialist enzymes. The biocatalytic formation of amide
bonds—amotif ubiquitously found in pharmaceuticals, agrochemicals,
polymers, fragrances, flavors, and other high-value products25—could
offer unique advantages over synthetic counterparts26–28 (e.g., mild
reaction conditions and chemo-, stereo-, and regioselectivities) and
facilitate sustainable biomanufacturing29–32. McbA from Mar-
inactinospora thermotolerans33 is one representative ATP-dependent
amide bond synthetase involved in the biosynthesis of marinacarbo-
line secondary metabolites34. McbA, and its close homolog ShABS35,
have been shown to have a relaxed substrate scope, accepting several
simple acids and amines commonly found in pharmaceuticals33,36. This
backdrop suggests that McbA could serve as a flexible starting point
for engineering a generalist enzyme into multiple reaction specialists
each capable of carrying out a different chemical reaction. Our ML-
guided approach was able to improve the McbA enzyme activity
relative to the wild type enzyme between 1.6- and 42-fold for produ-
cing nine compounds.

Results
Exploring the biocatalytic synthesis landscape of McbA
The goal of this work was to develop an ML-guided, DBTL workflow
that expedites simultaneous directed evolution campaigns for bioca-
talysis by reducing screening burden. This goal required generating
sequence-fitness data for unique chemical transformations, from
which to create predictiveMLmodels. To identify reactions of interest,
we first explored the possible amidation reaction space of wild-type
McbA (wt-McbA) by evaluating enzymatic substrate promiscuity
(Fig. 2A). We studied an extensive array of substrates that deviated
from the heterocyclic acids and primary or aromatic amines preferred
by wt-McbA. These substrates included primary, secondary, alkyl,

aromatic, complex pharmacophore, electron poor or rich species, and
substrates containing other heteroatoms, halogens, and “unpro-
tected” nucleophiles or electrophiles. More challenging substrates
(e.g., complex heterocyclic acids and amines, enantiomers, and sub-
strates containing both acids and amines ormultiple acids and amines)
were also included to determine the innate limitations and preferences
of wt-McbA. We carried out 1100 unique reactions with low enzyme
concentration (~1 µM) and high substrate concentration (25mM),
covering numerous molecules of known value including pharmaceu-
ticals, fragrances, and polymers (Fig. 2B).

Interestingly, wt-McbA displayed a tolerance to multiple “unpro-
tected” functional groups and geometries. Generally, aliphatic acids
were poorly tolerated while aryl, benzoic, and cinnamic acids were
readily accepted substrates. Charged aryl acidswere a unique exception
and usually coupled to very few amines. Conversely, wt-McbA readily
coupled primary and secondary aliphatic amines but struggledwith aryl
amines. We observed that McbA was able to synthesize 11 pharmaceu-
tical compounds as well as dozens of hybrid molecules (Fig. 2C), ran-
ging from trace amounts detectable only bymass spectrometry (MS) to
~12% conversion. In these reactions, we uncovered both stereo-
selectivity (e.g., strongly favoring the synthesis of S-sulpiride over R-
sulpiride) and strict chemo- and regioselectivity preferences (e.g.,
substrates containing both acids and amines not polymerizing). Given
that the reaction mechanism of McbA first begins with the adenylation
of the carboxylic acid, we also noticed several instances where only the
acyl-AMP intermediate was observed. Several important molecules are
not synthesized by wild-type McbA (Fig. 2D). These inaccessible pro-
ducts suggest that McbA may not be able to react with aliphatic and
fatty acids (e.g., nonivamide, capsaicin) or particular large substrates
(e.g., imatinib, nilotinib). A better understanding of substrate scope can
guide future enzyme engineering work.

Cell-freeprotein engineering to rapidly screen sequence-defined
protein libraries
With specific chemical transformations identified from our evaluation
of enzymatic substrate promiscuity, we next wanted to quickly gen-
erate large amounts of sequence-function relationship data of mutant
McbAenzymes for trainingMLmodels topredict high-activity variants.

Explore 
unseen 

sequence 
space

Train supervised 
model

Which 
Predictor?

Which 
Encoding?

How 
Many?

Design: Residue selection
Structural Insight

Design Tools Evolutionary Trends

Introduce mutation with PCR

Gibson Assembly

PCR amplify LETs

Build: Cell-free DNA assembly and protein synthesis

CFPS

A
B

C
D

E
F

G
H

I
J

K
L

M
N

O
P

A
B

C
D

E
F

G
H

I
J

K
L

M
N

O
P

A
B

C
D

E
F

G
H

I
J

K
L

M
N

O
P

A
B

C
D

E
F

G
H

I
J

K
L

M
N

O
P

 1           2
           3

          4
           5

           6
            7

          8
          9

         10        11         12        13        14         15        16        17        18        19       20        21        22        23       24

< 24 hours

Test: Assay protein fitness

Characterize coevolved 
properties

Site Saturation Library

Learn: Fitness landscape

Amino Acid

Fitness

Digest parent

Rosetta

EVmutation

PROSS
Stereo- and 

chemoselectivity

Stability

Kinetics

A B

C

X Y

?

?

Zero Shot 
Prediction

Amino Acid 
Encoding

Fitness

Machine-Learning Guided 
Directed Evolution

reaction class generalist reaction specialists

Su
bs

tra
te

 s
pa

ce

Substrate space

possible chemical space

buildtest

designlearn
Specific, high performance engineered enzymesBroad, low performance wild type enzyme

inaccessible
product space

accessible
product space

Fig. 1 | An ML-guided, cell-free enzyme engineering platform. Schematic shows
howadesign-build-test-learnworkflow is applied to rapidlymap sequence-function
landscapes. Putative residues directing enzyme catalysis are rationally selected
based on structural insights, evolutionary trends, and computational tools (e.g.,
ROSETTA71, EVmutation47, PROSS55) (design). Site saturation mutagenesis and cell-

free gene expression are carried out in less than 24 h to generate sequence-defined
libraries (build). The libraries can then be screened for desirable protein fitness
metrics (test). Information from the test phase, including failures, is used to identify
functionally important amino acid residues that feedback on iterative designs, as
well as fit ML models (learn).
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To do this, we implemented a cell-free protein synthesis approach that
does not require laborious transformation and cloning steps (Fig. 1).
Our approach relied on cell-free DNA-assembly18 and CFE37 to build
site-saturated, sequence-defined protein libraries. This workflow had
five steps: (i) a DNA primer containing a nucleotide mismatch intro-
duces a desired mutation through PCR, (ii) DpnI digests the parent
plasmid, (iii) an intramolecular Gibson assembly forms a mutated
plasmid, (iv) a second PCR amplifies linear DNA expression templates
(LETs), and (v) the mutated protein is expressed through CFE. In this
way, hundreds to thousands of sequence-defined protein mutants can
be built in individual reactions within a day, and mutations can be
accumulated through rapid iterations of the workflow. Our approach
avoids any potential biases in typical site-saturation libraries that arise
from the use of degenerate primers.

We validated our workflow using the well-characterized, mono-
meric ultra-stable green fluorescent protein38 (muGFP) by targeting
four residues that are known to be important for stability and
fluorescence39,40 (Fig. S2). When building our site-saturated library
targeting these four residues (77 variants), we found a high tolerance
to primer design deviations (e.g., homologous overlaps, melting tem-
peratures) (Fig. S3, S4) and that LETs of muGFP variants conferred all
desired mutations (Fig. S5). Full-length soluble proteins indicated that
changes in fluorescence were not due to changes in expression or
solubility (Fig. S6). Mapping the protein site-saturated landscape not
only highlights residues that are crucial for fitness (e.g., residues
composing the fluorophore and impacting hydrophobic core packing
were intolerable to mutations38) but also provides insight into the
general mutability of sites.

Screening conditions
25 mM Acid
25 mM Amine
25 mM ATP
1 μM CSL-McbA
10% DMSO
50 mM K2HPO4 Buffer
pH 7.5-8.0
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Fig. 2 | The diverse accessible chemical space of McbA suggests a biocatalyst
capable of synthesizing several high value molecules. A Reaction scheme and
screening conditions for exploring the substrate scope of McbA for the enzymatic
synthesis of amides. McbA was expressed using CFE and the reaction was initiated
by the addition of different combinations of acid and amine substrates. B The all-
by-all substrate screen for McbA, analyzed with reversed phase (RP)-HPLC (n = 1).
Darker red corresponds to a product that was observable by ultraviolet (UV)

absorbance while lighter red corresponds to trace amounts only detectable by
mass spectrometry. A complete list of substrates can be found in Fig. S1. C Among
the 21 high value molecules that were possible in the substrate scope, we observed
that McbA was able to synthesize 16 (11 of which are small-molecule pharmaceu-
ticals).D Example high value molecules that McbA was unable to synthesize under
the tested reaction conditions. Source data are provided as a Source Data file.
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After validation, we applied our workflow to McbA to generate
sequence-function relationship data that could train ML models to
expedite our engineering campaigns. We initially engineered McbA to
synthesize three high-value molecules identified by our substrate
scope evaluation: (i) the monoamine oxidase A inhibitor, moclobe-
mide, due to McbA’s high promiscuity towards this reaction36 (Fig. 2C
(5); 12% wt conversion); (ii) metoclopramide, due to the unique chal-
lenge posed by the acid component containing a free amine that could
potentially compete with the intended amine (Fig. 2C (8); 3% wt con-
version); and (iii) cinchocaine, which contains a unique acid compo-
nent but shares the same amine fragment as metoclopramide (Fig. 2C
(16); 2%wt conversion). By performing these engineering campaigns in
parallel we hoped to infer mutations that influence substrate specifi-
city for the amine (shared mutations) and the acid (unique mutations)
that may lead to general design principles for McbA.

Using relatively high substrate concentrations and low enzyme
loading as a step towards more industrially relevant reaction condi-
tions (Fig. S7),weperformed a hot spot screen (HSS) for eachmolecule
consisting of site-saturation mutagenesis on a wide sequence space to
identify residuepositions that, whenmutated, positively impactfitness
(Fig. 3A). Guided by the crystal structure of McbA (PDB: 6SQ8), we
selected 64 residues that completely enclosed the active site and
putative substrate tunnels (e.g., residues within 10Å of the docked
native substrates). Our HSS of these residues (64 residues × 19 amino
acids = 1216 total singlemutants) revealedmultiple residues that had a
positive impact on moclobemide (Fig. 3B), metoclopramide (Fig. 3C),
and cinchocaine (Fig. 3D) synthesis when mutated compared to wt-
McbA as measured by liquid chromatography-mass spectrometry
(LC-MS).

ML-guided, cell-free expression for protein engineering
With a large data set at hand for multiple, distinct single McbA
mutants, we set out to leverage ML models to accelerate the engi-
neering of McbA for the production of small molecules across diverse
regions of chemical space. The key idea was to use single mutant data
from the HSS to extrapolate higher order mutants with increased
activity (Fig. 3A). To achieve this goal, we chose to fit augmented ridge
regression models with our data—as such models are simple and have
been previously shown to outperform more sophisticated models for
protein engineering41—allowing us to predict higher-order mutants
with increased activity.

We first selected a predictive model architecture. McbA variant
feature representations consisted of site-specific amino acid encod-
ings concatenated with a zero-shot fitness prediction41. We considered
several amino acid encodings, ranging from simple one-hot encodings
to more complex descriptors that attempt to incorporate amino acid
physiochemical properties42–45. We also explored benchmark protein
variant fitness predictors to incorporate universal, evolutionary, and
structural based zero-shot predictions.We tested three specific fitness
predictors: the Evolutionary Scale Modeling (ESM)-1b transformer46

trained on the UniRef50 database (universal), an EVmutation (EC)47

probability density model trained on an MSA of evolutionarily related
sequences (evolutionary), andMAESTRO48 to estimate structure-based
changes in unfolding free energy (structural). Training and hyper-
parameter tuning were performed using single mutant data (n = 77)
from the HSS (top four hot spots; Fig. 3B, C).

In parallel, we conducted a more traditional directed evolution
campaign on each amide product (moclobemide, metoclopramide,
and cinchocaine) via iterative saturation mutagenesis (ISM). This
would provide valuable higher order mutations to validate and
benchmark model performance given our objective of extrapolating
from single to higher order mutations.

For moclobemide, we selected six residues from the HSS above a
threshold of 1.5-fold activity over wild type to mutate through three
rounds of ISM (Fig. S7). We first fixed the top mutation from the HSS

(V177S) and performed site-saturation mutagenesis on the five addi-
tional residues. By reintroducing previously fixed mutations in sub-
sequent rounds,we explored potential epistatic interactions (e.g., S177
was saturated in ISM round 2, given V177S was incorporated before
A323F). In addition, we completely explored all combinatorial double
mutants of the top two residues, which showed additive impacts for
moclobemide synthesis (Fig. S7). After three rounds of ISM, whereby
we selected the most highly active mutant in each round to start the
next round, we identified a quadruple mutant (qm-McbAmoc) with
increased activity—from 12% for wt-McbA to 96% conversion—for the
synthesis of moclobemide (Fig. S7). We characterized the apparent
steady-state kinetic parameters and stability of these enzymemutants
from each round of ISM. Specifically, we expressed, purified, and
evaluated each McbA variant observing a 42-fold increase in catalytic
efficiency from wt-McbA to qm-Mcbamoc (kcat/KM increased from 18.2
to 769M−1min−1) for the amine (Figs. S8, S9). Themelting point did not
significantly change between wt-McbA and qm-McbAmoc, but the sec-
ond mutation (A323F) increased Tm by 5.81 ± 0.09 °C when added to
the first mutation (V177S) (Fig. S10). Additionally, we showed that we
could make milligram quantities of moclobemide in a 10-mL reaction
(87% isolated yield) and confirmed the structure by NMR
(Figs. S11, S12).

Formetoclopramide,we selected 10 residues for the ISMcampaign,
which were all above a threshold of 1.25-fold activity over wild type.
Three rounds of ISM for metoclopramide yielded a quadruple mutant
that displayed nearly 30-fold improved activity over wt-McbA (Fig. S13).

The campaign for cinchocaine was more difficult to navigate and
we failed to observe beneficial mutations beyond a double mutant,
despite taking multiple ISM paths (Fig. S14). This result (i.e., running
into dead ends during ISM) supported the need to include ML models
in our framework that might capture epistatic interactions. We used
the ISM data for moclobemide and metoclopramide containing dou-
ble, triple, and quadruple mutants (n = 243 for moclobemide and
n = 169 for metoclopramide) to evaluate each model’s performance,
while cinchocaine would provide a unique pressure-test for our iden-
tified top-performing model.

Model prediction performance was first evaluated using the
normalized discounted cumulative gain (NDCG)14,49, an evaluation
metric that scores models on their ability to correctly rank high-
fitness variants (aligning with our experimental goal of discovering
high-fitness variants with minimal screening burden), which gen-
erally matched results from the Spearman rank correlation coeffi-
cient (Fig. S15). The augmented models outperformed the ridge
regression model alone when evaluated with NDCG. We also tried
combining predictors in our variant features (e.g., predictions from
both ESM-1b and EVmutation), but no increase inmodel performance
was observed. Lastly, we tested the necessity of the entire site
saturation dataset (n = 77) for training models to achieve high pre-
dictive performance and to evaluate whether smaller datasets com-
monly used in protein engineering would be sufficient. We withheld
variants in the training set to reflect common protein engineering
strategies that do not exhaustively search the sequence space,
including reduced codon libraries (NDT50 and NRT51), single amino
acid scans52 (here, we combine the commonly used glycine, alanine,
proline, and cysteine scans), and reduced alphabets that naturally
group amino acids by physiochemical properties (BLOSUM53). When
training the same augmented ridge regression model with Georgiev
encodings, this analysis indicated that utilizing all the data gathered
from the site saturation dataset provides more predictive power
(Fig. 4A, B). This can likely be attributed to the nature of the rich
datasets mostly containing mutants with non-zero activity (64/77 for
moclobemide and 62/77 for metoclopramide), preventing “holes” in
training sets14. Moving forward, we decided to use the site saturation
dataset and the augmented EVmutation model with Georgiev
encodings given the strong predictive performance among both
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compounds and the fact that the already-trained probability density
model simplified application to other compounds (Fig. 3A). EVmu-
tation is also less computationally resource and time intensive
than ESM.

Using our trained ML models (one single-objective model per
compound), we screened 204 combinatorial enzyme variants for the
synthesis of moclobemide, metoclopramide, and cinchocaine in
silico and selected the top 25 predictions to subsequently build and
test. We found that the augmented ML model was able to predict
McbA variants enriched in high activity for each amide product when
tested experimentally, some even surpassing qm-McbA from both
moclobemide and metoclopramide ISM campaigns (Fig. 4C–E and
Table S1). Notably, the best predicted mutant for metoclopramide
contained a mutation (A424S) that was superseded in the HSS by a
more active mutation (A424T) carried forward in ISM, indicating the
model found a superior mutant that would have been overlooked
using ISM alone. The best predicted variant for cinchocaine had
significantly higher activity than the best single mutation on its own
and surprisingly contained a mutation (A205L) that decreased
activity compared to wt-McbA in the HSS (Figs. S16, 17 and Table S2);
we could not rationally select and combine mutations from the HSS
to reach the same results. These results show that our ML-guided
strategy can discover high fitness variants for a variety of molecules
using the same starting enzyme. While it is unclear if the model can
directly infer nonlinear interactions, we found that it is able to avoid
path dependencies and reduce the screening burden. However, the
rank of experimentally tested predictions correlates poorly with
predicted rank (average Spearman’s rank correlation of 0.21 ± 0.15),
indicating the models may not accurately capture the entire
sequence-fitness landscape.

ML-guided biocatalytic diversification for high-value
pharmaceuticals
To assess the robustness of our approach, we next applied our ML-
guided framework to predict distinct McbA mutants for the synthesis
of an additional six pharmaceutical compounds. Starting with an
identified target reaction from our substrate scope screen (Fig. 2), we
used the same instance of our 1,216 singlemutantMcbA variant library
from above to perform an HSS (7,302 unique reactions total), select
four hot spots, and train ourMLmodel to predict higher ordermutants
with increased activity (Fig. 5A; Figs. S18–23). For each reaction, the top
24 predictions were tested, and the best variant was expressed, pur-
ified, and compared to wt-McbA activity. We observed increases in
yields ranging from 1.6-fold to 34-fold over wt-McbA for the six com-
pounds we tested (Fig. 5B–G and Figs. S18–23). For each compound,
the best predicted mutant always outperformed the best rational
design (i.e., combining the four best mutations from the HSS without
using the ML model; Table S3–5). Some mutants gave only modest
improvements, which may be an artifact of low signal-to-noise in the
hot spot screens for some of the target compounds that were only
detectable byMS. This can lead to flat fitness landscapes that aremore
difficult to model. Nonetheless, our framework yielded enzyme
mutantswith increased activity formultipleproducts thatwere initially
only observed in trace amounts.

We also compared how efficiently some enzyme variants perform
each reaction step (Fig. S24). For example, wt-McbA appears to be
proficient at the adenylation step for troxipide (adenylating 3,4,5-tri-
methoxybenzoic acid), but unable to catalyze amide bond formation
(Fig. 5G). The engineered enzyme variant can subsequently accept the
amine, leading to a large decrease in the observed intermediate. Ser-
endipitously, the engineered McbA variants for each target product
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Fig. 4 | ML-guided directed evolution predicts highly active mutants with a
lower screening burden than iterative site saturation mutagenesis.
A, B Analysis of model fidelity with training sets built with smaller libraries than
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amino acid alphabets based on BLOSUM50, quantified by spearman correlation (⍴)
and NDCG. Comparingmeasured versus predicted activity onwithheld ISM rounds
is shown for models trained on the complete saturation mutagenesis dataset for

bothmoclobemide (moc) (A), andmetoclopramide (meto) (B). The experimentally
validated percent conversion (n = 3; error bars indicate ± SD) of ML-predictions for
moclobemide (C), metoclopramide (D), and cinchocaine (E) with the quadruple
mutant from ISM (M4) colored gray. For cinchocaine, theMLmodel predictions did
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ments. Source data are provided as a Source Data file.
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also displayed strict regioselectivity despite the lack of any selective
pressure to maintain it. This is exemplified by the quadruple mutant
for troxipide that exhibits a 34-fold increase in activity without any
sacrifice in specificity. Similarly, stereoselective preferences with
S-sulpiride aremaintained. Taken together, our ML-guided framework
allows us to use functional data from singlemutant enzyme variants to
predict superior higher-order mutants rapidly and effectively.

Discussion
In this work, we established a high-throughput, ML-guided protein
engineering framework for predictive design that does not require
specialized computational resources. This framework uniquely inte-
grated a CFE and mutagenesis method, ML to expedite directed evo-
lution campaigns, and divergent evolution to convert a generalist
enzyme into multiple specialists. We showcased this framework by
rapidly navigating nine protein engineering campaigns for the amide
synthetase McbA, six of which were performed simultaneously.

Through efforts to build ML models and all ISM rounds, we
explored the sequence-function landscape of McbA by assessing 2856
variants of McbA (1217 variants of which were for ML models), 1100
possible amide products, and 12,584 substrate pair-mutant reactions.
We identified 19 unique residue positions within McbA that sig-
nificantly impact biocatalysis, with each reaction yielding a unique set
of these hot spot residues. Across all nine final engineered McbA var-
iants, we made a total of 21 different mutations occurring across 14
different residues (Fig. S25). While many of the substrate pairs contain
the same acid or amine, it is difficult to rationalize why certain muta-
tions arise as they are not conserved among many of these enzymes.
For example, the amide products metoclopramide, cinchocaine, pro-
cainamide, and declopramide all contain N,N-diethylethylenediamine
but different acids. One could propose that V177S is a beneficial

mutation for this reaction, but it is only a generalization and not uni-
versal as procainamide did not contain this mutation. However, our
data seems to indicate that residue selection (hot spots) are more
strongly related to the overall reaction and not the acid or amine
fragments on their own. In all cases, newly generated enzyme variants
demonstrated improved activity relative to wt-McbA variants (1.6-fold
to 42-fold improvement). In one example, an enzyme variant for
moclobemide synthesis achieved96% conversion (a 42-fold increase in
catalytic efficiency over wt-McbA) and was scaled to milligram
quantities.

An important feature of our work was the use of ML models
trained on single-residue mutations to predict higher order mutants
with improved fitness. We selected an augmented ridge regression
ML model because it had previously been shown to perform well
compared to more sophisticated approaches and was able to extra-
polate from single to higher order mutations, an observation that is
consistent with our data41. For example, in each of the nine test cases,
ML-predicted enzyme variants with 4 mutations had greater activity
than the combination of the four most active single-residue mutants
alone. This observation holds in instances where the data generation
is high quality (e.g., moclobemide), the fitness landscape is flat (i.e.,
many zero activity mutants and not many mutants that improve
activity), and the signal-to-noise ratio is high (e.g., declopramide),
which highlights the robustness of our approach. There may be
instances where more complex models (e.g., random forests, sup-
port vector machines, neural networks, etc.) that can generalize
better to the entire sequence space will be necessary to navigate
complex fitness landscapes. Despite this, the ML-guided framework
used here aided in the search around hypothetical ISM trajectories,
reducing effort and increasing success rates in multiple enzyme
engineering campaigns.

Fig. 5 | ML-guided engineering of distinct amide synthetases for the bio-
synthesis ofabroadpanelof small-moleculepharmaceuticals. AThe strategywe
used for machine learning-guided protein engineering of McbA is shown. First, we
identified non-native reactions that wt-McbA can catalyze and prioritized those that
produce valuable small-molecule pharmaceuticals. Second, an HSS of 64 residues is
used to down-select residues that positively impact activity. Third, an augmented
ridge regression model is trained on data from the HSS, and ML predictions are

experimentally tested. B–G Comparison of the highest activity predicted variant for a
panel of small-molecule pharmaceuticals compared to wt-McbA and an authentic
standard. Enzyme concentration was normalized to 0.5mg/mL (~9 µM) and products
were analyzed by RP-HPLC. The fold-increase in yield observed compares wt-McbA to
ML-McbA (n=3). Representative HPLC traces of product (red), acid substrate (pur-
ple), and adenylated acid (orange) for each reaction are shown. Traces are taken from
at least three independent experiments (n=3).
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Our approach can, in theory, be applied to any enzyme but will
require reaction-specific fine-tuning around data collection and ML
model generation. In terms of data collection, experimental screening
methods for biocatalytic reactions remain a bottleneck. Here, because
the product compounds of McbA were stable in the presence of the
cell-free expression lysate and chromatographic methods were effi-
cient (e.g., ~3min/per sample), LC-MSprovided amanageable solution,
as has been found in other examples54. As a complement to screening,
there will be enzyme engineering applications where selection strate-
gies are beneficial (e.g., when a tractable selection method exists, lar-
ger jumps in sequence space can be made). Engineering campaigns
with different proteins may also warrant exploring various ML models
and parameters. While we observed excellent performance with the
augmented EVmutation model, alternative fitness goals may also
require alternative fitness predictors. For example, if the goal is to
engineer stability, it would reason that a structural-based fitness pre-
dictor may be superior55. There are numerous other protein variant
effect predictors continuously pushing the state-of-the-art forward
that could improve our predictions56. More complex sequence
encodings based on natural language processingmay also outperform
augmented encodings46,57. Finally, we note that training theMLmodels
on more residues, multi-mutant data (including data from multiple
rounds of mutagenesis or random combinations of mutants that
diversify amino acids across the entire protein of interest), or kinetic
measurements could be beneficial in engineering better catalysts.

In sum, our accessibleML-guided, cell-free framework overcomes
traditional directed evolution challenges by circumventing path
dependencies that constrain sequence search space in state-of-the-art
methods. Additionally, cell-free expression from linear expression
templates expedites the process of exploring sequence-function
landscapes since the entire process for protein expression and
assessment can be done without cells and we could avoid laborious
cloning steps, taking hours instead of days to weeks. These features
speed the pace of engineering relative to ISM alone; our framework
enabled six enzyme engineering campaigns to be simultaneously
completed in just 1 week per compound. Furthermore, we also note
the low cost (i.e., cents per 10-µL reaction) and high scalability of CFE
enabling our workflow16. Beyond the benefits of the cell-free frame-
work, our work also highlights the versatility of the amide synthetase
McbA to be directed to catalyze many unique reactions of interest,
including those used in small-molecule pharmaceutical production.
Looking forward, we anticipate that the approach described here,
especially when augmented with de novo protein design10,58, will
accelerate enzyme engineering campaigns to unlock specialized
enzymes with diverse functions and properties.

Methods
Cell-free DNA assembly and gene expression
DNA libraries were created for both wt-McbA and muGFP. wt-McbA
from Marinactinospora thermotolerans (UniProt: R4R1U5) was codon-
optimized for E. coli and cloned into the pJL1 plasmid (Addgene,
69496) with an N-terminal CSL-tag59 (CAT-Strep-Linker fusion con-
taining Strep-tag II).muGFPwascodon-optimized forE. coli and cloned
into the pJL1 plasmid without a purification tag38.

The cell-free DNA library generation was performed as follows: (1)
the first PCR was performed in a 10-µL reaction with 1 ng of plasmid
template added, (2) 1 µL of DpnI was added and incubated at 37 °C for
2 h, (3) the PCRwas diluted 1:4 by the addition of 29 µL of nuclease-free
(NF)water, (4) 1 µLof dilutedDNAwasadded to a 3-µLGibson assembly
reaction (self-made)60 and incubated for 50 °C for 1 h, (5) the assembly
reactionwas diluted 1:10 by the addition of 36 µLofNFwater, (6) 1 µLof
the diluted assembly reaction was added to a 9-µL PCR reaction. All
cloning steps were set up using an Integra VIAFLO liquid handling
robot in 384-well PCR plates (Bio-Rad). Primers were designed using
Benchling with melting temperature calculated by the default

SantaLucia 1998 algorithm. We have noticed that melting tempera-
tures of alternative primer design tools sometimes deviate from those
calculated in Benchling, so users should consider this when designing
primers. The general heuristics we followed for primer design were a
reverse primer of 58 °C, a forward primer of 62 °C, and a homologous
overlap of ~45 °C. All primers were ordered from Integrated DNA
Technologies (IDT); forward primers were synthesized and received in
384-well plates andnormalized to 2 µMfor ease of setting up reactions.
Additional information on primer design and the codons we used for
all 20 amino acids can be found in Fig. S4 and Table S7. All PCR reac-
tions usedQ5Hot Start DNAPolymerase (NEB). Additional information
on thermocycler parameters can be found in Table S8.

To accumulate mutations for ISM, 3 µL of the “winner” from the
diluted Gibson assembly plate was transformed into 20 µL of chemi-
cally competent E. coli (NEB 5-alpha cells). Cells were plated onto LB
plates containing 50 µg/mL kanamycin (LB-Kan). A single colony was
used to inoculate 50mL of LB-Kan, grown overnight at 37 °C with 250
RPM shaking. The plasmid was purified using ZymoPURE II Midiprep
kits and sequence confirmed. Successive mutations can then be
incorporated via our cell-free DNA library generation method above.

The comprehensive combinatorial double mutant McbA library
(used in Fig. S7e)wasgeneratedby two successive roundsof saturation
mutagenesiswith noparticular residue targeted first. After the first site
saturation, plasmids containing each mutation were prepared follow-
ing the above protocol except 5mL of overnight cultures in LB-Kan
were used to purify plasmids using ZymoPURE II Miniprep kits. These
20 plasmids were used as templates for the next round of site
saturation mutagenesis to accumulate all 400 double mutants.

AllML-predictedMcbA variants were ordered as gblocks from IDT
containing pJL1 5’ and 3’ Gibson assembly overhangs. DNA was resus-
pended at a concentration of 25 ng/µL. A linearized pJL1 plasmid
backbone was ordered as a gblock from IDT, PCR amplified, purified
using a DNA Clean and Concentrate Kit (Zymo Research), and diluted
to a concentration of 50 ng/µL. Gibson assembly was used to assemble
the DNA encoding McbA variants with the pJL1 backbone. 10 ng of
purified, linearized pJL1 backbone and 10 ng of gblock insert were
combined in a 3-µL Gibson assembly reaction and incubated at 50 °C
for 30min18. The unpurified assembly reactions were diluted in 60μL
of NF water and 1μL of the diluted reaction was used as the template
for a 50-μL PCR reaction (using Q5 Hot Start DNA polymerase) to
generate LETs for CFPS.

Crude cell extracts were prepared as previously described using E.
coli BL21 Star (DE3) cells (Invitrogen)61. CFE reactions were performed
based on the PANOx-SP system37,62,63 and carried out in 384-well PCR
plates (Bio-Rad) as 10-µL reactions with 1 µL of LET serving as the DNA
template. Reactions were incubated at 30 °C for 16 h.

Expression and purification of recombinant proteins
pJL1-McbA plasmid was transformed into chemically competent E. coli
BL21 Star (DE3) cells (Invitrogen) following the manufacturer’s
instructions. Cells were plated onto LB-Kan and incubated overnight at
37 °C. A single colonywas used to inoculate a 5-mLovernight culture in
LB-Kan, grown at 37 °Cwith 250 RPM shaking. 1 L of Overnight Express
TB Medium (Millipore) was prepared following the manufacturer’s
instructions and supplemented with 100 µg/mL kanamycin. The TB
medium was inoculated the following day using the 5mL overnight
culture and grown at 37 °C with 250 RPM shaking until saturation
(~12–16 h). Cells were harvested by centrifugation (Beckman Coulter
Avanti J-26) at 8000× g for 10min at 4 °C. Cell pellets were either flash
frozen with liquid nitrogen and stored at −20 °C until future use or
resuspended in 25mL of Wash Buffer (100mM Tris-HCl pH 8.0,
150mM NaCl, 1mM EDTA, 10% v/v glycerol). Resuspended cells were
lysed by sonication (QSonica Q700 Sonicator) using six 10 s ON and
10 s OFF cycles at 50% amplitude, and the insoluble fraction was
removed by centrifugation at 12,000 × g for 20min at 4 °C. Clarified
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lysates were incubated with 2mL of pre-equilibrated Strep-Tactin XT
Superflow resin (IBA Lifesciences) with shaking for 30min at 4 °C.
Resin was loaded onto a gravity-flow column and washed three times
with 20mL Wash Buffer. McbA protein was eluted with 10mL of Elu-
tion Buffer (100mM Tris-HCl pH 8.0, 150mM NaCl, 1mM EDTA,
50mMbiotin, 10% v/v glycerol) and concentratedwith a 15-mLAmicon
Ultra Centrifugal filter (Millipore Sigma; 30 kDa cutoff). Purified McbA
was buffer exchanged into Storage Buffer (50mM HEPES pH 7.5,
300mMNaCl, 10mMMgCl2, 10% v/v glycerol) using a pre-equilibrated
PD-10 desalting column (Cytiva). McbA was stored at 4 °C for
immediate use (<48 h) or −20 °C for longer term storage. Protein
concentration was quantified by measuring A280 on a NanoDrop
2000c (Thermo Scientific), with McbA extinction coefficient and
molecular weight calculated by Expasy ProtParam. wt-McbA and the
six engineered McbA variants found in Fig. 5 were purified in this
manner.

muGFP activity assay
Performance of muGFP variants were quantified by measuring fluor-
escence on a plate reader (BioTek Synergy H1) using an excitation of
485 nm and emission of 528 nm. 10 µL of crude CFPS reaction con-
taining an expressed muGFP variant was transferred to a black, round
bottom 384-well plate (Nunc) prior to measurements.

Amide synthetase activity assay
All high-throughput assays (hot spot screen, iterative site saturation
mutagenesis, substrate scope, ML predictions validation, and ML
prediction exploration) were assembled in 384-well plates (Bio-Rad)
using an Integra VIAFLO liquid handling robot. A 2x reaction mix
containing the substrates (ATP, acid, amine, and DMSO) with excess
volume filled with 50mM potassium phosphate pH 7.5 was dispensed
as 3-µL aliquots ina 384-well plate. The amidation assaywas initiatedby
adding 3 µL of crude CFPS reaction containing an expressed McbA
variant, with final concentrations of 25mM ATP, 25mM acid, 25mM
amine, 10% v/v DMSO, and ~1 µMof enzyme (determined by 14C-leucine
incorporation using previously described protocols17). Stock solutions
of the acids were prepared in DMSO and this was taken into account to
reach 10% v/v DMSO. For reactions that were performed in triplicates,
3 µL from the same 10-µL CFPS reaction was used for three separate
assays. The reactionwas incubated at 37 °C for 16 h and then quenched
with 25 µL of methanol. Plates were stored at -20 °C until prepared for
analysis via LC-MS.

Amidation assays for the purified McbA variants found in Fig. 5
were set up similarly as described above in 384-well plates. 8-µL reac-
tions were assembled in triplicate, containing 25mMATP, 25mM acid,
25mMamine, 10mMMgCl2, 10U/mL pyrophosphatase (Sigma I5907),
0.5mg/mL McbA, 10% v/v DMSO, and volume to fill of 50mM potas-
sium phosphate pH 7.5. For assaying the production of cinchocaine
and procainamide, substrates were decreased in stoichiometric
amounts to 20mM and 10mM, respectively. This was to compensate
for an observed poor solubility of these two acids (2-butoxyquinoline-
4-carboxylic acid and 4-aminobenzoic acid) in the purified reaction at
10% v/v DMSO. Reactions were incubated at 37 °C for 16 h and then
quenched with 25 µL of methanol. Samples were stored at −20 °C until
prepared for analysis via LC-MS. The CAS numbers of all chemicals
used in the hot spot screens, as well as the amide standards we pur-
chased, can be found in Table S13.

Amide synthetase & ATP regeneration assay
Polyphosphate kinase, PPK12 from an unclassified Erysipelotrichaceae
(Uniprot: A0A847P5F2_9FIRM), was cloned, expressed, and purified to
homogeneity as previously described64. 20-µL reactions were assem-
bled in triplicate, containing 25mM amine, 25mM acid, 100mg/mL
polyphosphate (Sigma 1.06529), 10mM MgCl2, 10U/mL pyropho-
sphatase (Sigma I5907), 0.5mg/mL McbA, 0.5mg/mL PPK12, 10% v/v

DMSO, and volume to fill of 50mM potassium phosphate pH 7.5. A
2-fold serial dilution of AMP was prepared and added to the reaction
mix tofinal concentrations ranging from25mMto0.02mM.Reactions
were incubated at 37 °C for 16 h and then quenched with 25 µL of
methanol and analyzed by LC-MS.

Preparative scale biosynthesis of moclobemide
Scaled amidation assays for the enzymatic preparation of moclobe-
mide were set up similarly as described above. A 10-mL reaction
containing 25mM ATP, 25mM acid, 25mM amine, 10mM MgCl2,
10U/mL pyrophosphatase (Sigma I5907), 0.5mg/mL McbA, 10% v/v
DMSO, and volume to fill of 50mM potassium phosphate pH 7.5.
After 16 h, the reaction was quenched and product was extracted by
the addition of 30mL of ethyl acetate (3 × 10mL). The organic phases
were collected, washed with 0.2M NaOH (2 × 10mL), and brine
(2 × 10mL), dried over MgSO4, filtered, and the solvent was evapo-
rated under reduced pressure to afford the desired product as a
white powder (58mg, 87% isolated yield) without any further pur-
ification. The 1H and 13C NMR (found below and in Fig. S12) are in
good agreement with those previously reported65. Spectra for 1H and
13C NMRwere recorded at room temperature with a Bruker Avance III
500MHz system. Chemical shifts are reported in δ (ppm) relative
units to residual solvent peaks DMSO-d6 (2.50 ppm for 1H and
39.5 ppm for 13C). Splitting patterns are assigned as s (singlet), d
(doublet), t (triplet), q (quartet), quint (quintet), m (multiplet).
Coupling constants are reported as Hz, followed by integration.

1H NMR. (500MHz, DMSO-d6) δ 8.47 (t, J = 5.7Hz, 1H), 7.82–7.75 (m,
2H), 7.51–7.45 (m, 2H), 3.50 (t, J = 4.6Hz, 4H), 3.30 (d, J = 13.0Hz, 3H),
2.38 (t, J = 7.0Hz, 3H), 2.35–2.31 (m, 3H).

13C NMR. (126MHz, DMSO) δ 165.51, 136.38, 133.69, 129.55, 128.85,
66.66, 57.77, 53.76, 37.06.

LC-MS analytics
Amide products (along with acid substrates and some adenylated
acid intermediates) were analyzed using an Agilent G6125B Single
Quadrupole LC/MSD system equipped with an electrospray ioniza-
tion source set to positive ionization mode. The quenched samples
were centrifuged for 10min at 4500 × g to remove precipitated
proteins. A separate 384-well plate for sample injection into the
HPLC-MS was prepared by diluting 5 µL of the quenched samples
with 25 µL of methanol using the Integra VIAFLO. Trace amounts of
compounds were detected using MS, while many compounds were
present in high enough concentration to quantify by diode array
detector (DAD) at 254 nm. Compounds were separated on a Luna C18
Column (Phenomenex 00D-4251-B0) using mobile phases (A) H2O
with 0.1% formic acid and (B) Acetonitrile. The general method for
chromatographic separation was carried out using the following
gradients at a constant flow rate of 0.5mL/min: 0min 5% B; 1min 5%
B; 4min 95% B; 4.5min 95% B; 5min 5% B. For hot spot screens, an
expediated method was used with the following gradients at a con-
stant flow rate of 0.5mL/min: 0min 13% B; 1min 13% B; 2.2min 95% B;
3.2min 95% B; 3.5min 13 % B. For the MS, capillary voltage was set at
3 kV, and nitrogen gas was used for nebulizing (35 psig) and drying
(12 l/min, 350 °C). The MS was calibrated using Tuning Mix (Agilent
G2421-60001) before measurements were taken. MS data were
acquired with a scan range of 50–600m/z with various SIM m/z’s
according to which compound we were screening for. LC-MS data
were collected and analyzed using Agilent OpenLab CDS ChemSta-
tion software. The product yield was estimated by dividing the DAD
peak area for the amide product by the sums of the peak areas of
both the amide and the acid substrate. An exact quantitative yield for
moclobemide was recorded after its preparative scale synthesis and
isolation.
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Melting temperature determination
Protein melting temperature was determined using a Jasco J-810 cir-
cular dichroism spectrophotometer with a 10mm path length cuvette
monitored at 222 nm.McbA sampleswere first buffer exchanged into a
1X phosphate buffered saline solution, pH 7.4, and diluted to
0.2–0.4mg/mL.

Enzyme kinetics
McbA apparent kinetics for the amine pair of moclobemide (4-(2-
aminoethyl)morpholine) were determined by enzymatically coupling
amide bond formation (and the concomitant release of AMP from the
acyl-AMP intermediate by its substitution with the amine) with the
oxidation of NADH (Fig. S9). Reactions contained 100mMMOPS-KOH
pH7.8, 5mMMgCl2, 2.5mMphosphoenolpyruvate, 5mMATP, 0.3mM
NADH, 50mM 4-chlorobenzoic acid, 15 U/mL pyruvate kinase and
lactate dehydrogenase enzyme mix (Sigma-Aldrich P0294), 25 U/mL
myokinase (Sigma-Aldrich 475941), and various concentrations
(50–200 µg/mL) of the studied McbA variant. As the acid here (4-
chlorobenzoic acid) has poor solubility in water and was dissolved in
DMSO, the final reactions contained 10% v/v DMSO (equivalent to our
amidation screens). 180-µL reactionswerefirst equilibrated at 30 °C for
3min and then initiated by adding 20 µL of amine. The initial velocity
was determined for different concentrations of amine
(0.1mM–50mM)bymeasuringNADH absorbance at 340nMon aCary
60 UV-Vis (Agilent). Data was collected and analyzed using the Cary
WinUV Kinetics Application software (Agilent). Michaelis-Menten
graphs were plotted in GraphPad Prism and fit using the default
Michaelis-Menten non-linear regression analysis tool.

Kinetics for the acid pair of moclobemide (4-chlorobenzoic acid)
were measured similarly as described above, except the amine was
held constant at 50mM, and the reaction was initiated by addition of
various amounts of the acid. The final DMSO concentration was still
held constant at 10% v/v.We observed non-Michaelis-Menten behavior
when attempting to determine the kinetics for the acid, in what
appeared to be substrate inhibition by the acid (data not shown). We
also attempted to measure the acid adenylation step directly by
enzymatically coupling acyl-AMP formation (and the concomitant
release of PPi) with the oxidation of NADH to further probe the reac-
tionmechanism. The Piper™ pyrophosphate assay kit (Fisher Scientific
P22062) was used, but the addition of small concentrations of DMSO
resulted in the precipitation of enzymes found in the kit.

Amino acid encodings
Five different amino acid encoding strategies were studied here fol-
lowing the work of Wittman et al. and Vornholt et al.14,66: one-hot,
Georgiev, VHSE, z-scales, and physical descriptors. Beyond one-hot
encodings (that contain no information about the nature of the amino
acid at each position), we also wanted to include encodings that
attempt to encapsulate physiochemical properties of amino acids. We
briefly explain these encodings below (in order of most to least para-
meters) and encourage readers to visit these sources for further
information. Tomake informative numerical representations of amino
acid properties, these strategies performprincipal component analysis
of different manually curated sets of either experimentally measured
or computationally predicted/estimated properties. Georgiev42 fea-
tures (19-parameters) are principal components of the over 500 amino
acid indices taken from the AAindex database. VHSE43 features (8-
parameters) are principal components of 50 variables, focused on
hydrophobic, steric, and electronic properties. Z-scales44 (5-para-
meters) features are principal components of 26 variables, focused on
lipophilicity, size, and polarity. Physical descriptors45,67 (3-parameters)
features are derived from a rational ad hoc modification of principal
components of hydrophobic and steric properties of peptides. For all
strategies, we first generated encodings for the entire combinatorial
library tested (stored in a tensor of “420 unique variants” × “4 amino

acids” × “n-parameters”, where n-parameters is equal to the number of
amino acids for one-hot). The last two dimensions of the tensor were
then flattened to generate amatrix. Specifically for the physiochemical
encodings (excluding one-hot), each column of the matrix was stan-
dardized (mean-centered and unit-scaled).

Zero-shot predictions
Evolutionary. The EVmutations47 probability density model was
trained using the EVcouplings webserver (https://evcouplings.org/)
with default parameters, with the input sequence forMcbA taken from
UniProt (R4R1U5). The model we selected had a bitscore inclusion
threshold of 0.7. The model and code for replicating zero-shot pre-
dictions are provided in our GitHub repository. The mutation effects
prediction code provided in the EVcouplings GitHub repository
(https://github.com/debbiemarkslab/EVcouplings/blob/develop/
notebooks/model_parameters_mutation_effects.ipynb) was used as a
template. Features for the augmented models were derived from the
sequence statistical energy relative to wild type.

Universal. Predictions using the ESM−1b46 pre-trained transformer
language model were made using the code provided from the excel-
lent work of Wittman et al. on ML-guided directed evolution (https://
github.com/fhalab/MLDE)with the ESM−1bmodel provided in the ESM
GitHub repository (https://github.com/facebookresearch/esm).
Briefly, a mask-filling protocol was used to predict the probability of
different mutants by presenting the model with the entire sequence
and “masking” a position of interest. We used a naïve mask-filing
approach, which considers each variable position as independent from
each other. This mask-filing approach was used as it is less computa-
tionally expensive and provided slightly superior predictions than a
conditional approach (which does not assume independence of vari-
able positions) in this previous work. A complete description of the
code can be found in the original publication and the associated
GitHub repository. Features for the augmented models were derived
from the sequence log-probability relative to wild type.

Structural. Structural-based predictions were made using the
MAESTRO48 command line tool for Windows (v1.2.35). We used the
Protein Data Bank (PDB) structure for McbA (6SQ8) as the input and
calculated changes in stability (unfolding free energy) with the “eval-
mut” command. Features for the augmented models were derived
using the ‘energy’ output.

Machine learning-guided directed evolution
Ridge regression models were augmented following the code accom-
panying the elegant work of Hsu et al.41 (https://github.com/
chloechsu/combining-evolutionary-and-assay-labeled-data). McbA
variant sequence featurization was performed by concatenating zero-
shot predictions with site-specific amino acid encodings. Zero-shot
predictions were first standardized and regularized by a common
regularization strength (10−8). The L2 regularization strength for ridge
regression (α) was determined during hyperparameter tuning using
cross-validation. For our complete code used in this work, please see
our accompanying GitHub repository at https://github.com/
grantlandwehr/accelerated-enzyme-engineering. Given some chan-
ges made between initial model development and reimplementation
of the code for publication (e.g., hyperparameter tuning cross valida-
tion scheme, search range of the regularization coefficient α, etc.)
there are minor differences in predictions ranked 23–25 for metoclo-
pramide and moclobemide found in Fig. 4.

Model evaluation and selection were first performed retro-
spectively by using the assay-labeled datasets from our moclobemide
and metoclopramide engineering campaigns. Augmented models
(using combinations of the above zero-shot predictors and amino acid
encodings) were trained on the single site saturation libraries for four
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residues (n ≈ 80) and tested on the withheld higher-order mutants
from the additional rounds of saturation mutagenesis (n ≈ 200). The
four residues (hot spots) were determined by selecting the four resi-
dues that contained mutations with highest improvement in yield
among the 64 residues tested. Hyperparameter turning of α was per-
formed using repeated 5-fold cross-validation (with 20 repeats) by
randomly sampling 80% of the training data and testing on the with-
held 20%; model performance for hyperparameter tuning was scored
using mean squared error (MSE). With the optimized hyperparameter,
all trained models were used to make predictions on the withheld test
set. Spearman correlation coefficient and NDCG were used to select
the best zero-shot predictor and encoding strategy, with a preference
given to NDCG.

After identifying the best model (which in our case was aug-
menting the EVmutation probability density model with Georgiev
encodings), we made predictions on the entire combinatorial dataset
(n = 160,000). The top 25 predictions for moclobemide and metoclo-
pramide were then experimentally tested (Fig. 4). Model training and
predictions for the remaining seven amide products was performed
similarly as above. Given the already trained EVmutation probability
density model and the low dimensionality of the encodings, model
training and predictions for the entire combinatorial dataset could be
made in minutes running on 12th Gen Intel Core i7 with 32 GB RAM
without GPU acceleration.

Data collection and analysis
All statistical information provided in this manuscript is derived from
n = 3 independent experiments unless otherwise noted in the text or
figure legends. Error bars represent 1 s.d. of the mean derived from
these experiments. Data analysis and figure generation were con-
ducted using Excel Version 2304, ChimeraX Version 1.568, GraphPad
Prism Version 9.5.0, and Python 3.9 using custom scripts available on
GitHub. muGFP fluorescence was measured on a BioTek Synergy H1
Microplate Reader and analyzed using Gen5 Version 2.09.2. Auto-
radiograms were performed as previously described and scanned
using the Typhoon FLA 7000 Imager v1.269.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data presented in this manuscript are available in the Source Data
file or deposited in the associated GitHub (https://github.com/
grantlandwehr/accelerated-enzyme-engineering). Protein and DNA
sequences for all enzymes expressed in this work are available in the
Supplementary Information. Source data are provided with this paper.

Code availability
The code to reproduce the results is available at https://github.com/
grantlandwehr/accelerated-enzyme-engineering70.
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