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Highlights 
Heterologous protein expression is a fun-
damental technique used frequently in 
modern day biology. It enables scientific 
exploration of protein function as well as 
development of lifesaving medicines 
and economically impactful industrial 
products. 

Protein expression experiments primarily 
remain an experience-guided trial and 
error situation, even though it is an 
approach used by nearly all biologists. 
Recombinant protein expression is central to biotechnology’s application. 
However, not all proteins can be expressed in all organisms, and, given the 
vast experimental space, it can be challenging to identify the conditions that 
will yield successful protein expression. The field lacks a predictive model of sol-
uble protein expression that could replace laborious experimental trial and error. 
Here, we discuss the state of the field and identify the lack of large, high-fidelity 
datasets as the primary bottleneck to progress. We outline a proposed path to-
ward an extensible experimental platform for collecting soluble overexpression 
data across organisms. We suggest that the resulting data should be used to 
train predictive models of protein expression toward answering the question: 
can protein expression be solved? 
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Generating an openly available, large-
scale protein expression dataset that 
spans organisms and uses a standard 
experimental approach would provide 
the machine learning community with a 
foundation for building a multispecies 
predictive model of expression. 

A predictive model of protein expression 
would have a profound commercial 
impact and could replace countless 
hours of experimentation with a higher-
probability directed approach.
Why do we need a predictive model for protein expression? 
AlphaFold has ushered in a new era in biology in which predictive models complement or abro-
gate the need for time-consuming and expensive laboratory work in protein structure elucidation. 
Predicting a protein structure from sequence has generated successes across the industry – 
from basic scientists who can now study proteins on the basis of structural rather than sequence 
similarity to companies that can take new approaches to drug design aided by accurate in silico 
structure prediction. The huge impact of AlphaFold2 has inspired a search for the next prediction 
task that is feasible with today’s machine learning (ML) (see Glossary; see also https://www. 
nnlm.gov/guides/data-glossary/machine-learning) technology and that is equally impactful to 
industry. 

Soluble protein expression impacts all corners of the scientific community from basic scientific 
discovery and protein engineering to biomanufacturing. In this review, we are using the term 
‘soluble protein expression’ to generally describe the amount of protein in the soluble fraction 
of the cell lysate rather than the amount of a specific protein in a ‘pure’ solution after rigorous 
purification and quality assessment. There is a tremendous opportunity to save significant 
amounts of time and money by increasing the success rate of soluble protein expression, an 
endeavor that frequently leads to failure. Below, we highlight a few areas where a predictive 
model of protein expression would be game-changing (Box 1). We then dive into factors that 
impact protein expression. Following this, we summarize existing protein expression datasets 
and models generated from these data. Next, we outline both an experimental approach and 
an ML strategy that could be used to generate a predictive model. Last, we discuss major hurdles 
and a path for dataset growth beyond the first steps suggested in this review. 

Factors that impact soluble protein expression 
A major challenge in studying protein expression is that there are many steps that 
impact the probability of successful soluble protein expression in an expression host
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Box 1. Research areas impacted by protein expression 

Basic scientific research 

Soluble protein expression is necessary in basic research to probe structure and function and to develop new tools. One exam-
ple is the discovery and subsequent development of the CRISPR/Cas system. It took researchers decades after the CRISPR 
locus was first discovered before S. thermophilus CRISPR/Cas could be heterologously expressed and was functional in 
E. coli [55]. Expression of mutant Cas9 abrogated specific activities, and it was discovered that Cas9 could be directed to a spe-
cific  site  for  acti  on [56,57]. Shortly thereafter, heterologous expression of the system was used for genome editing in mammalian 
cells [58,59]. This very brief history of the CRISPR/Cas system highlights the impact of protein expression in heterologous sys-
tems. 

Protein engineering 

Protein expression is a major bottleneck for de novo protein investigations. Failure to express a designed protein can make 
validation and further study difficult or impossible. Many studies have been conducted to improve factors that impact 
expression of designed proteins. Examples of this include high-throughput methods for synthesizing and screening 
libraries of de novo protein domain stability [38,60]. Other protein engineering techniques, such as directed evolution, 
are similarly fundamentally limited by the need to retain intrinsic protein properties, which limits the speed with which 
proteins can be diversified [61–63]. 

Protein engineering can also use diverse sequences found in metagenomic samples, such as from the relatively 
unexplored ‘microbial dark matter’ [64–66]. Although sequencing and analysis technologies have allowed discovery 
of new protein families, expression of these genes remains a challenge and prevents efficient exploration of this vast protein 
space [67,68]. 

Biomanufacturing and pharmaceuticals 

Soluble protein expression in a heterologous host is an important avenue to generating enough protein for downstream inves-
tigation or for large-scale production for industrial purposes such as pharmaceuticals (insulin, Herceptin, monoclonal antibodies), 
industrial enzymes (carbohydrases, proteases), food proteins [69], and polymeric materials [70]. Purification of soluble protein 
from a microbial system is less expensive and less time-consuming than other methods. If a protein is insoluble, recovery of 
usable protein and process efficiency are significantly reduced, impacting economic feasibility of production [71,72]. Although 
the first FDA-approved recombinant protein therapeutic was introduced decades ago, achieving industrial production-ready 
titers still requires millions of dollars of investment along with substantial strain engineering and process development efforts 
[73]. Despite the challenges, recombinant proteins and protein drugs are a growing and valuable industry, valued at $2.8 billion 
in 2022 [72] with revenue of over $550 million in 2021 [73]. Unfortunately, projects are shelved if the protein cannot be 
expressed at adequate titers because of issues with scale-up and can lead to eventual abandonment of assets. 
(Figure 1). Although discussing the steps involved in protein synthesis from nucleic acid through 
functional folded protein are beyond the scope of this review, we discuss a few specific  examples  
as they pertain to common experimental variables in protein expression experiments. Broadly, the 
factors that impact expression can be divided into two categories: intrinsic and extrinsic factors 
[1,2]. Intrinsic characteristics of a protein are fundamentally determined by the amino acid 
sequence of the protein. The sequence determines post-translational modifications, necessity of 
cofactors, and formation of disulfide bonds. These in turn impact properties such as the isoelectric 
point, surface charge, and hydrophobicity. The cascade of intrinsic information starting at the 
sequence funnels to broader outcomes in heterologous systems such as foldability [3], solubility 
[1,2], and stability [4]  (Figure 1). Meanwhile, extrinsic factors represent variables determined by 
experimental choices in how to express the protein – host organism, host genotype, expression 
cassette architecture, codon choice, coexpression of chaperones and foldases, media compo-
sition, cultivation and lysis conditions, and so forth – that can be modified in the hope of better 
results (Figure 2).

We suggest that a dataset foundation for a predictive model must explore both extrinsic (e.g., 
different expression hosts) and intrinsic factors (e.g., different amino acid sequences). Ideally, 
the impact of both intrinsic and extrinsic factors could be predicted using ML models that are 
trained on the resulting dataset.
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Figure 1. Steps in the recombinant protein expression process. Successful soluble protein expression is the 
outcome of many processes, including transcription, translation, protein folding, and protein degradation. The sequence of 
the protein determines biophysical properties that interact with the environment to impact the probability of foldability, 
stability, and solubility in an expression host. Figure adapted from Bhatwa and colleagues [74], licensed under CC BY 4.0 
(https://creativecommons.org/licenses/by/4.0/).
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Figure 2. Intrinsic and extrinsic factors contributing to soluble protein expression. Intrinsic factors, those 
‘hard-coded’ into the protein via its sequence, and extrinsic factors, those that can be changed experimentally, are both 
important to explore in a protein expression dataset. 

Glossary 

Benchmarking: in machine learning 
and artificial intelligence, benchmarking 
is the process of systematically 
comparing performance of different 
models against predefined metrics and 
standards to identify strengths and 
weaknesses for each of the models. 
Cell-free expression system: a  soup  
of purified or crude components that 
can carry out protein expression in the 
absence of a cell .
Codon optimization: synonymous 
changes to the codons of a sequence to 
improve expression. 
Directed evolution: changing a 
specific trait through rounds of 
screening/selection after changing the 
DNA of an organism. 
Expression cassette architecture: 
the combination and organization of 
genetic elements controlling or 
augmenting the expression of the target 
protein. These components can be 
expressed from plasmids or integrated 
into the host genome. Some examples 
of expression cassette components 
include gene promoter, origin of 
replication, plasmid background, 
integration site, solubility enhancing 
fusion proteins, and tags required for 
purification. 
Expression host: a microbe or cell line 
used to express heterologous protein. 
Examples include bacteria (Escherichia 
coli, Bacillus subtilis), fungi (Pichia 
pastoris), mammalian cell lines (CHO, 
HEK293), and insect cell lines 
(Spodoptera frugiperda, Trichoplusia ni). 
Foldability: ability of a protein 
sequence to fold into its functional 
structure. 
Inclusion bodies: aggregate of 
proteins, usually misfolded but 
sometimes still functional. 
Machine learning (ML): training 
algorithms on existing data so they can 
identify patterns and predict the results 
of new, untested data or experiments. 
Microbial dark matter: unexplored 
microbial diversity. 
Pooled expression assay: a 
multiplexed measurement of protein 
quantity in a mixed population of cells, 
each expressing a distinct ORF. 
Reproducible: samples run three times 
and show the same measurement within 
an acceptable error range. The method 
can be run successfully at another 
laboratory, and data would reproduce. 
This is often helped by using automation 
and by providing detailed and freely
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Scalable: the assay can be run at high 
throughput, and it is economically 
feasible to do so. 
Shareable: detailed assay methods 
(technical and analytical) are made freely 
available. 
Singleplex expression assay (SPX): 
an arrayed measurement of protein 
expression measured in cells or cell 
lysate. Results from singleplex 
expression measurements can be used 
to calibrate large-scale, pooled 
expression measurements or on their 
own as standalone quantification. 
Examples include HiBiT, split fluorescent 
protein (split-FP), and Pierce BCA. 
Solubility: the protein’s  concentration  
in a saturated solution in equilibrium with 
a solid phase under specific conditions 
(e.g., proteins in solution vs. 
aggregated ).
Soluble protein expression: 
measurable recombinant protein in the 
soluble fraction of cell lysate produced in 
the context of an expression system. 
Stability: tendency to maintain a native 
conformation (e.g., folded vs. unfolded 
proteins). 

available protocols (shareable) and well-
defined and described internal 
standards. 
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As discussed above, soluble protein expression is the compound outcome of numerous upstream 
processes and is fundamentally constrained by the biophysical characteristics of the protein. For 
this reason, soluble protein expression is a valuable single readout that summarizes many relevant 
inputs. It is important to note that not all soluble proteins are properly folded or functional. Similarly, 
aggregates can appear in the soluble fraction [5]. Although proteins in aggregates or inclusion 
bodies may be functional, we focus our attention on soluble proteins in this review. 

While soluble expression is the desired goal, understanding where in the process expression fails 
is also valuable; however, probing these details may be secondary to gathering soluble expres-
sion data. Failure to express can be tackled with a bottom-up or top-down approach by 
attempting to diagnose where expression has failed or by finding conditions that work and then 
deducing why expression failed initially. Did expression fail at the transcriptional level? An example 
of a bottom-up approach would be to monitor RNA levels of the gene of interest over the course 
of the expression experiment. Low levels of RNA after induction may be caused by a weak pro-
moter or poor mRNA stability. To investigate this same issue via a top-down strategy, one could 
change the strength of the promoter driving the gene of interest or choose a strain with less 
RNase activity [e.g., BL21 Star (DE3); https://www.thermofisher.com/order/catalog/product/ 
C601003] and then assess expression. Did expression fail at the protein folding step? Expression 
can be tested in genetically modified strains with different protein folding chaperones or with in-
creased ability to form disulfide bonds (e.g., SHuffle T7 Express Competent E. coli; https:// 
www.neb.com/en-us/products/c3029-shuffle-t7-express-competent-e-coli). If the chaperone-
enhanced strain improved expression, one could hypothesize that the missing chaperone was 
what caused poor expression in the first experiment. 

Did expression fail because of protein stability/solubility issues? These properties are challenging 
to assess in lysate; however, using a purified sample, one can assay homogeneity (aggregation) 
using dynamic light scattering [6]. Alternatively, differential scanning fluorimetry [7] could be used 
to identify samples that do not contain a folded protein. Expression at a lower temperature after 
induction or expression of a protein with the addition of a solubility tag can improve outcomes. 

Both bottom-up and top-down approaches add value to the larger soluble expression dataset 
and to optimizing expression of a protein of interest. A top-down strategy could provide a solution 
to poor expression and would build the dataset by adding alternate conditions that would be 
stored as metadata, while a bottom-up approach adds diverse data types and targeted avenues 
for troubleshooting expression failure per open reading frame (ORF). Critically, soluble protein ex-
pression as a final readout captures the success (or failure) of all steps in the process and would 
be the recommended first data type to collect. 

Where are we now, and where do we need to go? 
There is currently no predictive model to understand which combination of factors will be most 
successful for soluble protein expression. Although there are available protein expression 
datasets, many are collected using different experimental methods, test expression in a single 
host, were not collected with ML applications in mind, or focus on a small subset of proteins or 
protein domains. Similarly, most existing models focus on a single variable of expression in a 
single host. The ideal dataset that would serve as a foundation for a predictive model of protein 
expression would be large in scale, cover diverse organisms, use consistent experimental protocols, 
be freely available, and be designed with ML utility in mind. 

The  creation  of  this  type  of  protein  expression dataset should be coupled with its use for 
benchmarking existing and future models, both for predicting protein expression, given an ORF
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sequence and host organism, and for generating ORF sequences, given a particular host organism 
and desired expression level. This can be facilitated by holding regular benchmarking competitions 
using the collected protein expression datasets, in which the community is challenged with defined 
predictive and generative tasks centered on protein expression and resulting model performance is 
compared against existing standards [8–10]. The use of datasets with benchmarking in mind not 
only informs the field of the strengths and limitations in current modeling approaches [8] but also 
reveals gaps in the dataset that can inform future data collection to bridge these identified gaps. 

Benchmarking competitions such as Critical Assessment of Structure Prediction (CASP) continue 
to play a key role in evaluating the strengths and weaknesses of structure prediction models and 
have highlighted the capability of models such as AlphaFold and AlphaFold2 in accurately 
predicting protein structures from amino acid sequences [11,12]. CASP accomplished this by 
challenging the computational structure modeling practitioners each year to predict the struc-
tures of proteins that experimentalists had determined recently but had not yet deposited in the 
public domain, as well as by performing a side-by-side comparison of the predictive models 
using well-defined evaluation metrics. Moreover, at the end of each year’s competition, CASP 
organizers also provided an appraisal of the state of structure prediction modeling in a retrospec-
tive report to the community. In recent years, similar benchmarking competitions have been 
designed for both predictive and generative models for protein engineering and protein–small 
molecule binding [13,14]. Benchmarking competitions could play a similar role in assessing the 
strength of predictive and generative models for soluble protein expression. The benchmarking 
competitions can be designed around defined predictive and generative tasks revolving around 
real-world protein expression problems, such as maximizing soluble expression in a particular 
heterologous host, while maintaining specific activity. The performance of the models can be 
compared using evaluation metrics that would meaningfully assess success in achieving these 
tasks and reporting a critical assessment of each year’s competition around the state of the 
predictive and generative modeling for soluble protein expression. 

Current approach to soluble recombinant protein expression 
Today, optimizing protein expression is primarily an exercise in experimental trial and error, 
guided by many qualitative predictors. The first step in a protein expression experiment is to 
choose an expression host. An excellent in-depth review of choosing an expression system 
has recently been published [15]. Important factors that drive the decision for selecting a host in-
clude whether the target protein is a prokaryotic or eukaryotic protein, whether the downstream 
use of the protein requires post-translational modification, if the protein has disulfide bonds, the 
size and complexity of the protein (e.g., membrane protein), and downstream applications [15]. 
One must then decide on a number of experimental variables (extrinsic factors), such as where 
to express the protein (extracellular or intracellular), the expression cassette details, which specific 
expression strain to use (genetic modifications to improve expression of proteins with specific 
characteristics), and what conditions to express the protein in (media, temperature, time, type 
of induction, etc.). 

Today, qualitative predictors of protein expression exist and are used to improve expression, often 
through experimental trial and error. A quantitative ML model of protein expression based on a 
large, open dataset, coupled to existing guidance and experience, would enhance the predictability 
of soluble expression and would be a widely used resource in both academia and industry. 

Available protein expression datasets 
ML models for generalized prediction of soluble protein expression will require new, large-scale 
datasets that do not exist today. Existing soluble protein expression datasets are small or highly
Trends in Biotechnology, Month 2025, Vol. xx, No. xx 5



Trends in Biotechnology
OPEN ACCESS
focused, or they have been collected from proteins expressed in vitro rather than in living organ-
isms. Larger datasets are typically narrow in scope (single proteins or domains) or aggregations of 
existing smaller datasets. They use data collected under differing conditions or protocols and with 
inconsistencies in data analysis (Figure 3). This creates gaps in usable data and metadata to help 
build ML models [16]. Finally, existing studies have typically focused on one expression host. We 
suggest that a valuable dataset would use a unified experimental setup rather than database 
mining and would focus on expression of ORFs in diverse expression hosts (e.g., Escherichia coli, 
Pichia pastoris, Bacillus subtilis, CHO, HEK293T, Aspergillus niger, Saccharomyces cerevisiae). 
Building a standardized dataset of diverse proteins captured in a consistent experimental setting 
across various hosts would be of incredible value on its own, but its value would increase exponen-
tially if used to develop highly predictive models of protein expression. 

Available protein expression models 

‘The biological principles for recombinant protein expression are well established; however, 
the ability to distinguish protein targets that express well from those that express poorly is still 
considered a ‘black box’ process that often requires screening many conditions to obtain a 
soluble product.’ [17] 

Models today focus on making predictions of one component of the multistep protein expression 
process, such as codon use or protein biochemical solubility, rather than making predictions of 
the overall process. Some models rely on gathering data on the same protein encoded with dif-
ferent codons to predict improved expression. One example of ubiquitously used models is those 
for codon optimization. When expressing a heterologous gene, it is often without a second 
thought that a scientist will use codon optimization to improve expression – these models have 
become synonymous with ordering synthetic genes for recombinant expression. Although the 
concept of codon optimization was first proposed nearly 40 years ago, there is little consensus 
between models when optimizing the same ORFs for expression in the same host [17]. Further-
more, despite substantial efforts to develop effective codon use optimization algorithms,
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Figure 3. Summary of existing protein expression datasets. The expression datasets are ordered from smallest to
largest by number of datapoints (y-axis). The color of the points represents the expression system that was used to gathe
the data. The x-axis is first author and year for the dataset paper citation. Table S1 in the supplemental information online
includes full citations, an assay summary, and annotation for whether the data represent native protein expression or ectopic
recombinant protein expression. 
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optimized sequences continue to show differences in expression level [17]. This example high-
lights the intricate nature of protein expression, even when focusing on a single variable such 
as codon use. 

Most existing models related to expression focus on protein solubility. Two datasets are high-
lighted in Figure 3 (eSol and TargetTrack) because they were used by multiple protein solubility 
models as input data. The eSol data are composed of ∼3200 E. coli proteins translated in a 
cell-free expression system with and without chaperones [18,19]. TargetTrack was a large 
protein expression effort driven by the Protein Structure Initiative (PSI) and was a compilation of 
several of their databases (PSI, TargetDB, PepcDB). This effort ended in 2017, and the data 
are available online to parse [20]. TargetTrack was an enormous effort spanning 35 centers 
and over 100 investigators, and expression, purification, and downstream structure determina-
tion of over 300 000 proteins was attempted. This was an impressive effort whose data have 
been used repeatedly for model building (Figure 4), although some characteristics of the dataset 
could be improved. For example, Hon and colleagues note, ‘A major limitation of this database is 
the low quality of its annotations…. Second, the experimental protocols used for protein produc-
tion and crystallization are described in free text with no internal structure, making it hard to auto-
matically extract information about experimental conditions and expression systems for a given 
target’ [1]. We suggest that a future dataset ‘stand on the shoulders of giants’ in order to expand 
open data available for model building and to leverage learnings from previous dataset structure 
and collection. 

Protein variant effect prediction (VEP) models assess how mutations in a protein may affect 
protein function [21]. In a similar way that a model of protein expression would allow researchers 
to move faster with fewer experiments, these models are of high interest because they can 
predict the consequences of mutations to a sequence without having to test the new proteins. 
Many VEP models have been benchmarked on predicting protein expression data in hundreds 
of publicly available deep mutational scanning and human clinical variant datasets in ProteinGym 
(>2.5 million data points, >200 different datasets). ProteinGym evaluates both supervised and 
unsupervised VEP models tested on different proteins expressed in a range of organisms. One
Method 

D
a

ta
se

t 
si

ze
 

0 

25000 

50000 

75000 

100000 

C
a

m
S

o
l 

rW
H

 

R
P

S
P

 

S
O

La
rt

 

G
A

T
S

o
l 

G
ra

p
h

S
o

l 

P
ro

te
in

-

P
ro

G
A

N
 

B
E

R
T

 

M
P

E
P

E
 

E
S

P
R

E
S

 

S
o

lu
P

ro
t 

D
ee

p
S

o
lu

 

S
W

I 

S
O

Lp
ro

 

N
et

S
o

lP
 

cc
S

O
L 

D
S

R
es

S
o

 

D
ee

p
S

o
l 

S
K

A
D

E
 

E
P

S
O

L 

P
a

R
S

n
IP

 

P
R

O
S

O
 II

 

Used TargetTrack data 

Used eSol data 

Used other data 

TrendsTrends inin BiotechnologyBiotechnology

Figure 4. Summary of existing solubility prediction models. The protein solubility prediction models are ordered on the
basis of the size of the dataset used to generate the model. This is the total size and does not separate the data used fo
training the model. The colors of the dots correspond to the expression datasets that were used in model building
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of the most commonly used metrics for success in VEP models is the Spearman correlation 
coefficient between the model predictions and the experimental data, where 0.6 is interpreted 
as a good signal and 0.2 is a weak signal. This curated set of benchmarks reveals that the 
best supervised model for predicting expression data, ProteinNPT [22], achieves a Spearman 
correlation coefficient of 0.637. The best unsupervised model for predicting protein expression 
is ProSST [23], with a Spearman correlation coefficient of 0.53. By contrast, the lowest-
performing supervised and unsupervised models have Spearman coefficients of 0.226 and 
0.171, respectively. Notably, these models are built from scratch each time on each new dataset 
encompassed within ProteinGym; they cannot be represented appropriately in Figure 4. These 
benchmarks demonstrate the potential success of protein variant prediction models in predicting 
protein expression; however, there remains significant room for improvement to achieve stronger 
correlations with experimental results. 

The ideal soluble protein expression dataset 
Building a generalized model of soluble protein expression across organisms will require a next-
generation dataset that is larger, more comprehensive, and more extensible than the data avail-
able today. In order for the required dataset to provide value, it would need to be large, diverse, 
unified, and openly available. Specifically, the dataset should contain expression data across 
diverse ORF families and include expression of the same proteins in several organisms to be com-
pared side-by-side. The dataset should include expression experiments in vivo rather than in vitro 
to capture intrinsic and extrinsic factors for expression and should be set up to generate ML-
ready data and metadata. For data to be considered ML-ready, it should be freely available 
and provided in a standardized and consistent experimental format(s), and data collection should 
be reproducible, shareable, and scalable and should overall comply with FAIR (findability, ac-
cessibility, interoperability, and reuse of digital assets) principles (https://www.go-fair.org/fair-
principles/) to enable use by scientists across fields and sectors to expand the dataset. 

Roadmap toward an expression dataset to inform predictive design 
If the scientific community is going to invest in gathering data on soluble protein expression, how 
should it be done to maximize the data quality and impact? Here, we roadmap technical options 
for data collection strategies. We review options for the two most critical design choices: which 
organisms to use as expression hosts and which assays to use to collect data. We evaluate 
organisms for their technical risk and possible impact and assays for their scalability and potential 
for creating a robust, open dataset. 

Expression hosts 
There are numerous protein expression hosts that are used because of their diverse strengths 
and weaknesses. (For more details, please reference this recent review on the topic [15].) 
Table 1 summarizes some of the most commonly used microbial expression systems.

It is challenging to build a framework for prioritizing the order of data acquisition when data in every 
organism would be valuable. To begin, we suggest acquiring data in organisms with low technical 
risk and high impact even in isolation. Data acquisition for these organisms can create momentum 
for a much larger dataset collection effort. We suggest E. coli and P. pastoris as starting organisms 
for an expression dataset because these are commonly used, easy-to-scale microbes that would 
produce data useful to a wide audience, including both academia and industry. They provide a 
quick avenue to test the data collection platform at an economical price point. 

Beyond the first two organisms, we suggest prioritizing the order of host expansion on the basis 
of several criteria, including promoting organisms that are widely used and deprioritizing
8 Trends in Biotechnology, Month 2025, Vol. xx, No. xx
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Table 1. Comparison of commonly used protein expression microbesa 

Organism Summary Growth Genetics Post-translational 
modification 

Expression 
efficiency 

Refs 

Escherichia 
coli 

Most commonly used, used in 
both academia and industry, 
easy to use, many genetic tools, 
cheap, many strain options, not 
a good choice for complex 
proteins or those that require 
PTM or many disulfide bonds, 
easy to do HTP screening, only 
some strains are considered 
GRAS 

Fast and high 
efficiency, simple 
media requirement 

Well-defined, 
simple, and high 
efficiency, 
automation-friendly 

Limited High without 
efficient secretion 

[15,73] 

Pichia 
pastoris 

More recent addition to the 
protein expression lineup, easy 
to use, although fewer tools than 
common bacterial hosts, used 
for complex proteins, cytokines, 
nanobodies, have eukaryotic 
PTMs, amenable to HTP 
screening, GRAS 

High cell density, 
easy scale-up 

Well-established, 
automation-friendly 
manipulation 

Yes but 
hypermannosylation 
can be an issue 

Moderate to high 
of secreted 
proteins 

[15,78,79] 

Bacillus 
subtilis 

Commonly used, used in both 
academia and industry, easy to 
use, many genetic tools, cheap, 
many strain options, good option 
for secreted proteins, easy to do 
HTP screening, GRAS 

Fast and high 
efficiency 

Convenient for 
gene modification, 
automation-friendly 

Limited High yield with 
secretory 
expression and 
produces no 
lipopolysaccharide 

[80] 

Aspergillus 
niger 

Used primarily in industry, can 
degrade biomass (CAZzyme 
expression for industry), strong 
survivability (good for producing 
antibiotics, enzymes), good for 
secreting organic acids, proteins, 
enzymes, and secondary 
metabolites. HTP screening is 
challenging. Strain generation 
and screening are not quick, 
GRAS 

Fast and high 
efficiency, 
measurement and 
control of 
filamentous growth 
and 
macromorphology 
not trivial 

Complex 
manipulation and 
lower 
transformation 
efficiency, 
automation is 
challenging to use 

Typical eukaryotic 
post-translational 
modifications 

High and efficient 
secretion 

[81,82] 

a Table adapted from Zhang and colleagues [76] and Ntana and colleagues [77], licensed under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/). Abbreviations: 
GRAS, generally regarded as safe; HTP, high throughput; PTM, post-translational modifications.
organisms that introduce new technical risks. As the dataset grows, key milestones will be expan-
sion to other microbes; eukaryotes, including mammalian cell lines and filamentous fungi; and a 
broader exploration of expression hosts, including insect cells and cell-free methods. While expres-
sion of the same ORFs between hosts builds data toward predicting expression in different host 
systems, the addition of cell-free methods could bolster predictive power between these in vitro 
methods that are capable of rapidly screening many combinations of enzymes and the in vivo sys-
tems ultimately used for large-scale fermentation [24]. For each expression system, data collection 
requires identifying a specific strain genotype and expression cassette for initial data acquisition. 

Data collection methods 
In this section, we review experimental methods that were used in gathering existing datasets, 
describe alternative methods, and provide an assessment of these for the purpose of collecting 
a large-scale expression dataset (Table 2, Table 3).

The assays discussed are categorized as either singleplex (SPX) or pooled expression assay 
methods. SPX methods measure one sample per assay (arrayed), even when multiple samples
Trends in Biotechnology, Month 2025, Vol. xx, No. xx 9
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Table 2. Assay assessment for singleplex measurementsa 

Assay Reproducible Shareable Scalable Quick/easy 
to run and 
analyze 

Affordable Adaptability to 
other expression 
systems 

+/− 

Bradford (with 
Ni-NTA 
enrichment) 
Total = 14 

✔✔✔ ✔✔ 
Plate-based 

method 

✔ 
Kit >$5/sample 

extraction 

✔✔✔ 
Plate-based Kit >$5/sample 

Total = 14 
method 

✔✔✔ 
Plate-based Kit >$5/sample 

extraction 

✔✔ 
Lysis variability 

✔✔✔ 

plate-based 
extraction 

quantitation variability 

✔✔✔ 

HiBiT 
Total = 14 

lysis variability 
✔✔✔ ✔✔ 

Plate-based
readout

✔✔

Kit <$1/sample
troubleshooting

✔✔✔

✔✔ 
Common 
method, 
variability 
between 
proteins

✔✔✔ 
Com mon

✔✔✔ 
His tag + protein

+ Adaptable, ‘gold standard’ 
method 
− Variability between 
proteins, standards must be 
run each tim e

BCA (bicinchoninic 
acid) (with Ni-NTA 
enrichment) 
Total = 14 

✔✔✔ 
Common 
method

✔✔ 
✔✔ 
Common 
method, 
multis tep

✔ ✔✔✔ 
His tag + protein 
extraction

+ Adaptable, ‘gold standard’ 
method 
− Interference, standards 
must be run each time

AlphaLISA 
✔✔✔ 
Kit-based 

✔✔ 

✔✔ 
Derivative of 
a common 
multistep 
method

✔ ✔✔✔ 
His tag + protein

+ Adaptable, ‘gold standard’ 
adjacent method, can be 
automated 
− Requires two shared 
epitopes for all pr oteins

Coomassie 
SDS-PAGE (with 
Ni-NTA 
enrichment) 
Total = 10 

✘ 
Some steps 
not

✔ 
Many steps 
involved, 
quantitation 
can be 
variable

✔ 
Ni-NTA for 
enrichment, 
cost of people 
time

✔✔✔ 
His tag + protein

+ Adaptable, common ‘gold 
standard’ method 
− Low throughput,

MS (with Ni-NTA 
enrichment) 
Total = 14 

✔✔✔ 
Common 
method

✔✔ 
Plate-based, 
instrument 
time

✔✔✔ 
Common 
method

✘ 
Ni-NTA for 
enrichment, 
instrument time

✔✔✔ 
His tag + protein 
extraction

+ Adaptable, common ‘gold 
standard’ method 
− Costly (instrument time)

✔✔ 
Kit-based, 

✔✔ 
Growth, 
lysis,

✔✔ 
HiBiT tag, lysis

+ Easy, commonly used 
method industrially, kit-based 
− Cell lysis and reaction 
timing may require 
troubleshooting, not a gold 
standa rd

Split-FP 
Total = 16 

✔✔✔ 
Plate reader 
protocol

✔✔ 
Plate-based

✔✔✔ 
Growth, 
readout

✔✔✔ 
Plate reader 
time

✘ 
FP expression, 
requires tuning

+ Easy, commonly used 
− FP expression tuning, not 
a gold stan dard

a Check marks denote positive attributes, ‘x’ marks denote suboptimal characteristics. The ‘?’ highlights areas where the characteristic is unknown. ‘Total’ refers to the 
number of check marks per row. See Table S3 in the supplemental information online for assay details and citations. Abbreviation: FP, fluorescent protein.
are processed in parallel or using automated systems (e.g., fluorescence readout from plates). By 
contrast, pooled methods combine many samples into a single measurement and require down-
stream deconvolution of data. Generally, pooled methods are more cost-effective and have 
higher throughput, while SPX methods remain simpler to implement and analyze. 

Quantification of specific proteins can be done using a variety of assays, each with unique char-
acteristics. Assays can measure protein expression in living cells, or they can quantify protein 
from cell lysate, either in the whole lysate or after enrichment of the target protein. Some com-
monly used assays (UV-Vis absorbance, Bradford, bicinchoninic acid) are typically used to quan-
tify total protein in an SPX format. To be used for an expression dataset, ideally, the protein of 
interest would be isolated and enriched before quantification. Assays used to detect a specific 
protein in a complex sample include ELISA, western blots, size exclusion HPLC and mass spec-
trometry (MS). We focus on assays that have previously been used for high-throughput expres-
sion data collection. Reformatting the graph in Figure 3 to color and group points by assay
10 Trends in Biotechnology, Month 2025, Vol. xx, No. xx
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used, one can see that MS, SDS-PAGE, and growth-based assays are the most common 
methods used in multiple large datasets (Figure 5). 

We briefly describe the assays found in Figure 5, covered in order of most to least prevalent (from 
left to right of the graph in Figure 5). The assays are assessed in Table 2 and Table 3.

MS 
MS is a way to measure a molecule’s mass-to-charge ratio. This information can be used to iden-
tify and quantify the molecule of interest (https://www.broadinstitute.org/technology-areas/what-
mass-spectrometry). Most studies in Figure 5 that used MS were quantifying proteomes rather 
than targeted ORFs, as would be the suggested implementation for a protein expression dataset. 
Stable isotope labeling or label-free proteomics with ORF targeted data analysis could be imple-
mented in a singleplex or pooled manner (https://www.protocols.io/view/label-free-
quantification-lfq-proteomic-data-analy-5qpvobk7xl4o/v2). 

Peptide barcodes (‘flycodes’) 
There is a recently developed peptide barcoding strategy in which proteins are directly barcoded 
with short peptide barcodes (also called ‘flycodes’)  [25]. These flycodes are cleaved from the final 
protein and then distinguished/quantified with MS. The number of available unique peptide 
flycodes that can be pooled and distinguised using MS is not limiting [25,26]. 

Growth-based assays 
Growth-based assays use growth as a readout for the fitness of a target protein and can be per-
formed on SPX or pooled samples. One popular version of a growth-based assay requires recon-
stitution of a protein that confers antibiotic resistance, such as dihydrofolate reductase (DHFR), 
which provides resistance to methotrexate [27]. Growth-based assays have commonly been
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Table 3. Assay assessment for pooled measurementsa 

Assay Reproducible Shareable Scalable Quick/easy to 
run and analyze 

Affordable Adaptability to 
other expression 
systems 

+/− 

Label-free 
proteomics 

✔✔ 
Newly adopted

✔✔ 
Pool size 
limitation,

? 
Pool size limitation, 
requires protocol 
and analysis 
development 

✔ 
Ni-NTA for 
pull-downs, MS 
time, pooled, 
depends on 
pool sizes

✔✔✔ 
His tag + protein 
extraction, need 
identity of native 
proteome

+ Adaptable, pooled, 
direct measurement 
− Uncommon use case 
requires development, 
pool size limited by ORF 
peptide diversity

✔✔ 
FACS 

Total = 12 method 
✔✔✔ 

MS time 

Sort-seq 
Total = 13 

method/analysis 
✔✔✔ ✔✔✔ 

FACS time 
sequencing 

time 

Total = 13 selection 
✔✔✔ 

methods sequencing 

✔✔✔ 
Pooled, NGS 

Peptide 
flycodes 

analysis pipeline 
prohibited method time analysis pipeline dev’l cost extractions 

✔✔✔ ✔✔✔ ✔✔✔ ✔✔✔ 
Cell free 

YSD+FACS ✔✔✔ 
FACS time Yeast only 

TAT+FA CS ✔✔✔
Pooled, NGS E. coli only

✔✔ 
Growth, readout, 
FACS +

✔✔ 
Pooled, FACS

✔ 
FP expression, 
tuning, FACS 
methods at 
facilities may be 
limiting

+ Pooled, mostly 
adaptable 
− FP expression tuning; 
FACS method and 
analysis onboarding / 
developmen t

Growth-based 
assay (DHFR) 

✔✔ 
Antibiot ic

✔✔✔ 
Automatable 
NGS

✔✔ 
Growth, antibiotic 
select ion,

? 
Requires 
specific 
antibiotic 
sensitivity 

+ Affordable, pooled 
− Indirect readout, 
adaptability unknown, 
uncommon assay for 
expression, large tag on 
ORF required

? 
New method and 

✘ 
Method 
sharing

? 
Large pools 
possible, MS 

✘ 
Pooled growth, 
new method and

✔ 
Pooled, MS 
time, method

✔✔✔ 
Peptide tag on 
ORF and protei n

+ Adaptable, pooled 
− New method with 
unclear chance of 
success, nontrivial data 
analysis and design, not 
a shareable method

Cell-free 
protease 
assay 

? 
An existing 
method moved to 
a cell-free system 

✘ + Affordable and quick 
− Not commonly used, 
cell-free

✔✔ 
FACS method/ 
analysis

✔✔ 
✔✔ 
Growth, staining, 
readout, FACS + 
sequencin g

✔✔ 
Pooled, FACS 
time, stain

✘ 
+ Easy, commonly used 
− Yeast-specific, 
requires protein export to 
cell surfac e

✔✔ 
Antibiotic 
selection

✔✔✔ 
Automatable 
NGS 
methods

✔✔? 
Growth, antibiotic 
selection, 
sequencing 

✔✔✔ ✘ + Easy 
− E. coli-specific, 
requires protein export

a Check marks denote positive attributes, ‘x’ marks denote suboptimal characteristics. The ‘?’ highlights areas where the characteristic is unknown. ‘Total’ refers to the number of 
check marks per row. See Table S4 in the supplemental information online for assay details and citations. Abbreviations: FP, fluorescent protein; NGS, next-generation sequencing.
used to interrogate protein–protein interactions where two proteins are each tagged with half of the an-
tibiotic resistance marker, and, upon interacting, the reconstituted marker confers a fitness advantage 
in the face of antibiotic selection [28–30]. Split-DHFR has been used for protein quantification in yeast 
to generate large datasets (Figure 5, orange points). To measure the abundance (expression) of a tar-
get protein, the target is tagged with a portion of DHFR, and the complementing part is overexpressed 
in the cell [28,30]. The higher the expression of the tagged ORF, the more DHFR is reconstituted (since 
the other half of DHFR is expressed in excess over the tagged protein and is not limiting) and therefore 
the  more  this  specific strain can grow in the presence of methotrexate. When used to interrogate a 
pool of strains, the population is sequenced before and after selection, and the abundance from 
deep sequencing can be used to calculate fitness (growth rate) and infer expression of each variant, 
with thousands of variants per pool [30].
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SDS-PAGE 
This technique is one of the traditionally used SPX methods for confirming protein expression for 
purified proteins. However, it is difficult to scale this to assay many samples. As was mentioned 
previously, this method was used by TargetTrack. One of the participating locations, the 
Northeast Structural Genomics Consortium (NESG) was responsible for expressing over 
25 000 constructs in E. coli [BL21(DE3)] from a pET-based system where researchers used an 
SPX assay for expression. They quantified via Bradford assay and subsequently included addi-
tional SDS-PAGE to verify their Bradford results [31,32]. In more recent protocols, the protein 
purification step was removed, and soluble and total cell lysates were run on SDS-PAGE followed 
by staining the gels with Coomassie Blue and quantifying expression in the soluble and insoluble 
fractions on a scale from 0 to 5 on the basis of the intensity of the band observed [31,33,34]. 
Capillary electrophoresis is a modern alternative to SDS-PAGE but carries high consumable 
costs. 

Yeast surface display + fluorescence-activated cell sorting 
Yeast surface display (YSD) is a technique where target proteins are tagged for extracellular localization 
(N-terminal Aga2p domain) and with an epitope tag on the C-terminus. Successfully expressed cell 
surface proteins can be quantified using epitope specific antibodies. To use this in a pooled manner, 
fluorescently conjugated antibodies can be coupled to fluorescence-activated cell sorting (FACS). Bins 
of sorted populations can be sequenced to identify constituent ORFs [35]. 

TAT [twin-arginine translocation (Tat)-selective export of folded proteins into the bacterial periplasm] 
Similarly to the YSD assay, proteins are tagged with a periplasmic export signal (Tat) and a beta-
lactamase enzyme that confers resistance to ampicillin when extracellular. ORFs that are 
successfully expressed and exported confer resistance to ampicillin [35]. Similar to a growth-
based assay, this method can be used on a pool of strains. 

GFP + FACS 
Wrenbeck and colleagues [36] fused GFP to thousands of protein variants (two proteins with thou-
sands of mutations) to probe expression (dark green point in Figure 5). The cells were then sorted 
into bins by FACS, and sequencing on binned populations was used to map mutations to different 
amounts of fluorescence. This approach allows pools of cells to be interrogated at the same time. A 
variation on this method is based on a method called ‘bimolecular fluorescence complementation 
(BiFC) [37]. The ORF of interest is tagged with a portion of a fluorescent protein (e.g., a portion of 
GFP, GFP11), and the complementing fragment (GFP1-10) would be constitutively overexpressed in 
the same cell. Interaction of the two fragments produces a fluorescence signal, dependent on the ex-
pression and proper folding of the ORF of interest [37]. In an SPX setting, a plate reader can be used to 
gather fluorescence data per strain. Extending the method to a pooled approach requires FACS and 
sequencing, as was used by Wrenbeck and colleagues [36]. This method is also referred to as ‘Sort-
Seq’ or ‘FlowSeq.’ 

Cell-free protease assay 
In this method, test proteins are transcribed and translated with cell-free cDNA display in a pool. The 
proteins are N-terminally PA tagged, and after translation they contain their cDNA at the C-terminus. 
These tagged proteins are then challenged with proteases, pulled down and quantified via sequencing 
of the C-terminal cDNA tag [38]. Protease resistance is used as a metric for protein stability. 

HiBiT 
Protein abundance can be measured using a split NanoLuc luciferase system. Proteins of interest 
are N- or C-terminally tagged with the 11–amino acid HiBiT peptide tag (a portion of NanoLuc).
Trends in Biotechnology, Month 2025, Vol. xx, No. xx 13



Trends in Biotechnology
OPEN ACCESS
The HiBiT complementing LgBit polypeptide is added after cell lysis. When HiBiT and LgBiT inter-
act, they reconstitute the luminescent enzyme, NanoLuc. Luminescence intensity is proportional 
to the abundance of the HiBiT tagged protein of interest (https://www.promega.com/resources/ 
technologies/hibit-protein-tagging-system/). 

Comparison of assays 
An ideal assay for large-scale protein expression dataset collection should be reproducible, 
shareable, scalable, quick and easy, affordable, and extensible to different host organisms. 
Reviewing the assays used to collect previous datasets, we conclude that there is no clear 
‘winner’ for large dataset collection. Rather, each assay has unique pros and cons (Table 2, 
Table 3). Some of the assays that were used to populate existing datasets (Figure 5) could be 
used to generate a large protein expression dataset (MS, HiBiT, Split-FP, growth-based assay), 
while others are difficult to scale with automation (SDS-PAGE), are not adaptable (cell-free prote-
ase assay, YSD, TAT), or use methods that cannot be made publicly available (peptide flycodes). 
We summarize our assessment of the assays in Table 2 and Table 3. 

A pooled assay would allow large-scale dataset generation in the most efficient way possible. 
Pooled methods such as label-free proteomics and Sort-seq are attractive options because of 
their economy, adaptability, and shareability. However, because pooled assays are nontraditional 
for protein quantification, it is critical that they undergo validation using low-throughput 
(singleplex) methods of protein quantification. The SPX assays in Table 2 contain strong 
candidate assays for this orthogonal data collection toward pooled assay validation. It is impor-
tant to note that these methods could also be scoped as large-scale dataset collection methods, 
pending their scalability. 

Whichever assay is chosen for large-scale dataset collection, data collected using an alterna-
tive method for a small percentage of samples is recommended. These orthogonal data 
serve both as a continuous spot-check for the high-throughput assay during data generation 
and as additional training or testing data for models capable of handling labels generated in 
different ways. 

ML analysis strategy 
The purpose of this review is not to prescribe ML models for predicting protein expression but 
rather to showcase that a dataset enables such an approach. Data must be collected in a manner 
such that the ML community can easily use the dataset to develop a variety of models for 
predicting protein expression. Involving ML experts throughout data collection can enable a 
‘smarter not harder’ approach that prioritizes informative, diverse new sequences rather than 
simply expanding dataset size with redundant or low-value datapoints. 

Calculating quantitative protein abundance and storing metadata 
Data would be composed of a protein DNA sequence and corresponding protein abundance. 
Protein abundance calculations would be assay-specific. Metadata would include expression 
host; plasmid information, including annotated sequence in .gb format; protein amino acid 
sequence with tags; UniProt and NCBI accession numbers for protein sequences; GO terms; 
source species of the DNA sequence; detailed expression protocol; automation protocols 
where applicable; and specific assay protocols [6]. 

Data storage 
Data should be made available in a relational database accessible to the public through a REST 
API [e.g., Experiment Data Depot (https://public-edd.agilebiofoundry.org/) and/or other available
14 Trends in Biotechnology, Month 2025, Vol. xx, No. xx
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options]. Snapshots of this database at certain time points (e.g., for the initial dataset or for large 
data increases) will be made available to the public in a static manner through Nature Scientific 
Data (https://www.nature.com/sdata/), Zenodo, or similar established third-party repositories. 

Proposed ML models 
A supervised ML approach could be used to predict protein concentration (response or label) 
from protein DNA sequence and metadata (input or features). Specifically, the prediction task 
takes two inputs – the DNA sequence and the desired host – and produces one output – 
predicted reconciled protein concentration from the SPX and pooled approaches (Figure 6, 
Key figure). Unsupervised methods have also shown a signal toward predicting protein expres-
sion [23,39]. Models trained on multiple sequence alignments of a reference protein or likelihoods 
extracted from a large pretrained large language model can both be used as proxies to predict 
protein expression. Semisupervised approaches could be designed that integrate both the la-
beled data, as described with the supervised approach, and the likelihoods calculated from the 
unsupervised approach. Finally, transfer learning could be applied to any of the above 
approaches to extrapolate information from a data-rich area to a data-poor area. For instance, 
protein expression data collected under specific growth conditions (e.g., culture media, temper-
ature, etc.) could inform prediction on protein expression in untested growth conditions. Similarly, 
plentiful unsupervised data – many natural sequences or structures – available for a homologue of 
the protein of interest could be used for modeling the protein itself. 

Proposed baseline model architecture 
ML approaches for predicting the properties of proteins have seen significant advancements in 
recent years. Here, we identify promising modeling approaches by comparing the prediction of 
expression of soluble proteins with other biological prediction tasks. 

One of the closest analogies is protein structure prediction from sequence, which was revolution-
ized by AlphaFold2 in 2021 [40]. Similar performance was later achieved using protein language
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Figure 6. An expression dataset for model building would use the ORF sequence and experimental metadata as input (green
box), and the response would be the protein abundance measured in an arrayed or pooled format (orange box). Figure adapted
from Radivojevic and colleagues [75], licensed under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/). 
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Outstanding questions 
What is the best assay(s) to generate a 
large-scale dataset? 

How much expression data is 
necessary to build a predictive model 
that generalizes? 

Can enough data be collected over the 
vast variable space to seed a predictive 
model? 

How much of the experimental space 
does a dataset for model training 
need to cover versus what transfer 
learning can fill in? 

What variables of protein expression 
experiments are most important to 
gather experimental data on? 

How will models built on existing 
proteins perform using de novo 
designed proteins? 

Does the same assay readout need to 
be used for all organisms tested with 
a specific set of ORFs? 

How many ORFs need to be 
expressed in an organism to generate 
a predictive model of expression? 
How sequence diverse do the ORFs 
need to be? 

With all the data generated toward 
‘solving’ protein expression, what 
other basic science questions could 
be answered with non-ML methods? 

Will a learned ML model outperform 
a mechanistic model on the basis 
of codon optimization, RNA second-
ary structure, chaperones or other 
specific phenomena known to impact 
expression?
models, such as ESM in 2023 [41]. These models are trained on large datasets of unlabeled pro-
tein sequences through unsupervised learning. Like natural language models, they tokenize pro-
teins into short peptide snippets and challenge a model to predict the next token. This process 
enables the models to identify meaningful patterns in proteins that go beyond the raw sequence 
data, such as structural features. For instance, protein language models such as UniRep can cor-
rectly classify the domain of life where the protein originated, whether a given residue is in an alpha 
helix or beta sheet, and has inferred the chemical similarity of the 20 amino acids [42]. Today, sci-
entists widely rely on structure-based and multiple sequence alignment–based models, such as 
AlphaFold, as well as protein language models, such as ESM-3, for accurate structure prediction. 

Protein embeddings, derived from these language models, have been used in transfer learning to pre-
dict a variety of labeled data types, including fluorescence [43], stability [44], and other biochemical 
properties [45–47]. This technique involves extracting the learned embeddings from a large pretrained 
model and using them as input to train a model on a smaller experimental dataset [42]. Protein embed-
dings are valuable because they encapsulate relevant features in a compressed form, which can en-
hance predictive accuracy and reduce the amount of labeled data required for training [48]. 

Currently, predicting protein properties is limited by the availability of high-quality data. Existing ML 
methods can be applied to analyze new, large datasets. We suggest benchmarking new protein ex-
pression prediction models on the curated and diverse datasets included in ProteinGym and compar-
ing the new models’ performance against existing state-of-the-art models. Additionally, we suggest 
using the TAPE framework [47] as a baseline for benchmarking the performance of protein transfer 
learning on new expression datasets. This framework could be updated with embeddings from 
more recent models, including ESM [49], and use SPECTRA-based train–test splits [50]. After estab-
lishing baseline model performance, further research could explore new ML architectures that integrate 
additional inputs, such as codon optimization scores, Rosetta free energy predictions [51], and micro-
bial genome embeddings [52]. These inputs could provide valuable information that is not captured by 
protein embeddings alone, potentially enhancing predictive accuracy. 

Scaling laws 
Empirical scaling laws in other ML domains have guided trade-offs between computer resources 
and data collection [53]. In protein ML, efforts to establish similar scaling laws are still nascent [54]. 
Further research is needed to determine how data quantity and diversity influence predictive per-
formance. A large-scale protein expression dataset, as outlined in this review, would provide a 
crucial foundation for investigating these relationships and optimizing model design. 

Concluding remarks and future perspectives 
A predictive model for protein expression would be transformative for biotechnology, offering the po-
tential to improve the efficiency of protein engineering and biomanufacturing. In this review, we have 
compiled the experimental and computational approaches that could make such a model possible. 
Although the ‘ultimate’ expression dataset would be a tremendously challenging undertaking to gen-
erate in one combined effort, we believe that this type of dataset can be built over time. The field needs 
a ML-ready dataset containing a large number of quantitative measurements of diverse proteins. Data 
must be collected in a manner such that the ML community can easily use the dataset to develop a 
variety of models for predicting protein expression. Furthermore, it must be freely available, comparable 
between organisms, and reproducible at different sites. 

A broad and diverse set of scientists would greatly benefit from expanded protein expression 
data. However, each scientist has their favorite host, protein type, and assay, making it difficult 
to select a single starting point for data collection. We suggest choosing an initial, well-defined
16 Trends in Biotechnology, Month 2025, Vol. xx, No. xx
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dataset that can be independently valuable to many scientists and also act as a rallying point to 
expand to and test a wider number of variables. We suggest E. coli and P. pastoris as starting 
organisms for this dataset because these are commonly used, easy-to-scale microbes that will 
produce data useful to a wide audience (including both academia and industry). They would 
provide a quick way to test the data collection platform at an economical price point and build 
momentum to expand to data collection in more hosts. SPX methods will likely be cost-
prohibitive for large-scale data collection. Instead, these methods could be used as a validation 
assay to spot-check samples analyzed via pooled methods. Pooled methods are attractive 
options because of their economy, adaptability, and shareability. We believe that label-free 
proteomics and growth-based assays would be the first pooled assays to test since proteomics 
would be organism-agnostic and growth-based assays have produced large-scale expression 
data previously. Building biological datasets fit for training robust and generalizable ML models 
is a new endeavor, and therefore the amount and types of data required remain unknown (see 
Outstanding questions).

The number of variables involved in protein expression is large; however, these variables can be 
viewed as dimensions for future dataset growth. Examples of different variables that future 
expression datasets could explore include different host organisms (i.e., strains with more or 
less ability to post-translationally modify), new waves of protein sequences (diverse proteins, 
deep mutation scanning of proteins, different codon usage, de novo proteins), additional exper-
imental conditions (temperature, media, growth vessel), expression cassette modifications (i.e., 
solubility tags), targeted localization of proteins, and coexpression of chaperones, and these 
are a few avenues in which the dataset can grow (Figure 7). Beyond soluble expression as a read-
out, future collection of different types of data that could help analyze failure modes of expression 
is another way that this dataset could be enriched in follow-up collection efforts and could even 
generate new mechanistic insights. 
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