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Synthetic biology is defined by Design-Build-
Test-Learn cycles. Recent advances in machine
learning are changing the landscape; thus, we
propose that “Learning” can precede “Design”.
Moreover, adopting cell-free platforms can fur-
ther accelerate “Building” and “Testing” for
megascale data generation and models.

Synthetic biology arose and has advanced by following the simple
engineering mantra of Design-Build-Test-Learn (DBTL)". In the first
phase of this workflow, researchers define objectives for the desired
biological function and then design the parts or system they want to
use. This can include introducing novel components or redesigning
existing parts for a novel application’. The Design phase relies on
domain knowledge, expertise, and computational approaches for
modeling’. In the Build phase, DNA constructs are synthesized,
assembled into plasmids or other vectors, and then introduced into
the characterization system. Systems include in vivo chassis such as
bacteria, eukaryotic cells, mammalian cells, and plants, or in vitro cell-
free systems and synthetic cells. The Test phase determines the Design
and Build phases’ efficacy by experimentally measuring the engineered
biological constructs’ performance. The Learning phase relies on
analyzing data collected during testing and comparing it to objectives
set during the Design stage. This enables researchers to inform the
next Design round and iterate through additional rounds of the DBTL
cycle until they have reached their desired function. These cycles
streamline and simplify efforts to build biological systems by provid-
ing a systematic, iterative framework for engineering,.

Machine learning provides a new opportunity for directly engi-
neering proteins and pathways with desired functions but is challen-
ging due to the complex relationship between a protein’s sequence,
structure, and thus, function. Although computational models have
often yielded successes*, there are still instances where models are
unable to predict how sequence changes will affect protein folding’,
stability®, or activity’. Additionally, protein function often depends on
the environment in which the protein is expressed, which can be dif-
ficult to anticipate in silico, and characterizations often require
painstaking transformation, expression, and purification. These road-
blocks argue for a different approach to the overall synthetic biology
workflow that places Learning to the fore, in the form of machine
learning.

The DBTL paradigm described here is not unique to protein
engineering or synthetic biology. This workflow closely resembles
approaches used in established engineering disciplines such as
mechanical engineering, where iteration involves first gathering

information, processing it, identifying design revisions, and imple-
menting those changes®. In mechanical engineering, physical laws are
extensively employed to model parameters such as damping, friction,
and stiffness’. Incorporating prior knowledge from machine learning
models to refine and construct designs for testing can accelerate the
path to functional solutions.

Unsurprisingly, machine learning has also become a driving force
in the synthetic biology enterprise”. Machine learning approaches
have become dominant not because they replace physics, but because
current biophysical models are computationally expensive and limited
in scope when applied to the complexity of biomolecules. Machine
learning methods can economically leverage large biological datasets
to detect patterns in high-dimensional spaces, enabling more efficient
and scalable design. Protein language models that rely on attention
mechanisms are useful for designing proteins as they can capture long-
range evolutionary dependencies within amino acid sequences,
enabling the prediction of structure-function relationships, albeit
imperfectly today. Since these models are trained on large datasets
consisting of millions of protein sequences or hundreds of thousands
of structures, machine learning can precede and be directly incorpo-
rated into the Design phase, allowing researchers to increasingly be
able to make zero-shot (without additional training'?) predictions that
improve the functionality of protein parts (Fig. 1a).

Sequence-based protein language models—such as ESM* and
ProGen'—are trained on the evolutionary relationships between pro-
tein sequences embedded in all of phylogeny. These language models
are thereby capable of tasks such as predicting beneficial mutations
and inferring the function of protein sequences and have proven adept
at zero-shot prediction of diverse antibody sequences™ and predicting
solvent exposed and charged amino acids”. Even in the absence of
exact prediction, pre-trained protein language models have been used
to design libraries for engineering biocatalysts that have yielded
enantioselective bond formation’®.

Similarly, structural models learn from the ever-expanding data-
bases of experimentally determined structures to enable powerful
zero-shot design strategies. For example, MutCompute focuses on
residue-level optimization by identifying probable mutations given the
local environment. MutCompute uses a deep neural network trained
on protein structures and can thereby associate an amino acid with its
surrounding chemical environment, allowing for prediction of poten-
tially stabilizing and functionally beneficial substitutions”. The success
of this method is demonstrated in engineering a hydrolase for poly-
ethylene terephthalate (PET) depolymerization, where proteins with
mutations from MutCompute had increased stability and activity
compared to wild-type'®. In contrast, ProteinMPNN is a structure-based
deep learning design tool that takes an entire protein structure as
input and predicts new sequences that fold into that backbone®.
ProteinMPNN has been used to design variants of TEV protease that
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Fig. 1| Proposed enhancements to current DBTL workflow. A Sequence- and
structure-based machine learning (ML) models. Sequence-based models use amino
acid sequences—they do not explicitly require knowledge of the protein structure.
Structure-based models include tools to fold the protein sequence, to generate

sequences that fold into the backbone, and optimize local structural regions of the
protein. B Cell-free expression enables rapid, customizable protein synthesis and
testing. Shifting from cell-based to cell-free platforms integrates with the DBTL
pipeline, speeding up Build and Test steps.

improve catalytic activity compared to the parent sequence. Further-
more, it has been demonstrated that combining ProteinMPNN for
sequence design with deep learning-based structure assessment (e.g.,
AlphaFold® and RoseTTAFold), leads to a nearly 10-fold increase in
design success rates”. Hybrid approaches, such as physics-informed
machine learning?, also offer the potential to combine the predictive
power of statistical models with the explanatory strength of physical
principles.

In addition to purely sequence- and structure-based approaches,
zero-shot methods have been augmented with additional evolutionary
and biophysical information, illustrating how multiple layers of

biological knowledge can enhance predictive power in protein engi-
neering. In one example, researchers have improved upon the one-
shot designed PET hydrolase by using a large language model trained
on two datasets of PET hydrolase homologs and force-field-based
algorithms, essentially exploring the evolutionary landscape®. Other
examples include efforts to map sequence-fitness landscapes across
multiple regions of chemical space to simultaneously engineer multi-
ple distinct specialized enzymes**.

Beyond models that generate designs based on a protein’s
sequence or structure, there are also machine learning-guided engi-
neering models that focus on functional prediction. Two protein
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properties that are frequently targeted for optimization are thermo-
stability and solubility. The software Prethermut predicts the effects of
single- or multi-site mutations using machine learning methods that
were trained on a collection of experimentally measured thermo-
dynamic stability changes of mutant proteins®. Similarly, Stability
Oracle was trained on a collection of stability data and protein struc-
tures, using a graph-transformer architecture to learn pairwise repre-
sentations of residues®. As an output, Stability Oracle predicts the AAG
of the protein. Both approaches can be used to eliminate potentially
destabilizing mutations or to identify stabilizing ones. Finally, DeepSol
is a deep learning-based tool for predicting protein solubility, relying
on mapping the primary sequence (via sets of k-mers) to solubility”.
These examples likely presage many future efforts to more finely
predict functionality.

Classic synthetic biology methods play a large role in translating
computational predications into the physical, biological systems, but
the DBTL paradigm can be further accelerated by using cell-free
methods for expression and testing of predictions (Fig. 1b)**. Cell-free
gene expression leverages protein biosynthesis machinery obtained
from either crude cell lysates or purified components® to activate in
vitro transcription and translation. Synthesized DNA templates can be
provided to cell-free systems for protein expression without inter-
mediate, time-intensive cloning steps, and the expressed proteins can
be used directly or can be further purified. Cell-free expression sys-
tems are rapid (>1 g/L protein in <4 h*°), enable production of products
that are otherwise toxic to a live cell”, are readily scalable from the pL
to kL scale®, and can be coupled with colorimetric or fluorescent-
based assays for high-throughput sequence to function mapping of
protein variants®. The required cellular machinery can be obtained
from organisms across the tree of life, and DNA and reagents can be
readily exchanged due to the modular nature of cell-free expression
platforms, enabling facile customization of the reaction environment.
Incorporation of non-canonical amino acids and post-translational
protein modifications like glycosylation and phosphorylation has also
been achieved, positioning cell-free expression platforms as a highly
productive and versatile strategy for high-throughput synthesis and
testing of nearly any protein product or enzymatic pathway***.

Cell-free systems can be readily combined with liquid handling
robots and microfluidics to further scale the number of reactions and
speed at which researchers can traverse the classic DBTL cycle®. For
example, DropAl leveraged droplet microfluidics and multi-channel
fluorescent imaging to screen upwards of 100,000 picoliter-scale
reactions®. Biofoundries (e.g., EXFAB) are also increasingly leveraging
cell-free platforms® alongside existing high-throughput workflows.
Closed-loop design platforms that leverage Al agents® to cycle
through experiments are further expanding capacity. These high-
throughput capabilities of cell-free expression systems provide a
powerful tool to build large datasets for training machine learning
models and to test in silico predictions, including data for solving the
protein expression problem®.

Cell-free expression platforms have already been effectively
paired with machine learning techniques to advance protein and
pathway design. Ultra-high-throughput protein stability mapping has
been achieved through coupling in vitro protein synthesis with cDNA
display, allowing the AG calculations of 776,000 protein variants*°.
This vast dataset has been extensively utilized to benchmark various
zero-shot predictors for model predictability”’. Additional protein
engineering efforts have incorporated machine learning directly into
the engineering campaign through training linear supervised models

on over 10,000 reactions from iterative rounds of site saturation
mutagenesis data to accelerate the identification of enzyme candi-
dates with favorable properties, which has been applied towards
engineering amide synthetases*. Pairing deep-learning sequence
generation with cell-free expression, researchers have been able to
computationally survey over 500,000 antimicrobial peptides (AMP)
and select 500 optimal variants to experimentally validate, leading to 6
promising AMP designs*. Cell-free pathway prototyping has also
dramatically benefitted from incorporation of machine learning. In
vitro prototyping and rapid optimization of biosynthetic enzymes (or
iPROBE) uses a training set of pathway combinations and enzyme
expression levels to then predict optimal pathway sets via a neural
network, which has been leveraged to improve 3-HB in a Clostridium
host by over 20-fold*. In summary, cell-free systems have proven to be
a powerful platform towards large-scale data generation and seam-
lessly integrating machine learning into both protein and pathway
engineering campaigns.

Overall, even with machine learning enhancements, the classic
DBTL cycle requires multiple turns to gain knowledge, and the Build-
Test portions of the cycle can be especially slow. The field continues to
rely heavily on empirical iteration rather than predictive engineering.
We propose a paradigm shift, wherein in many cases, the data that
would be “learned” by Build-Test phases may already be inherent in
machine learning algorithms (or alternatively new “ground truth” data
sets will be generated that form the basis of foundational models).
Given the increasing success of zero-shot predictions, it may be pos-
sible to reorder the cycle (and, indeed, do away with cycling alto-
gether) via “LDBT”, where Learn-Design (based on available or readily
plumbed large data sets) allows an initial set of answers to be quickly
built and tested, leading to a single cycle that can generate functional
parts and circuits (Fig. 2). This process in turn brings synthetic biology
closer to a Design-Build-Work model that relies on first principles,
similar to that of disciplines like civil engineering. Such a shift would
have transformative impacts on efforts to engineer biological systems
and help reshape the bioeconomy.

To better enable the LDBT paradigm shift, additional (and pre-
ferably large, megascale) datasets linking sequence to structure and
function must be assembled. Even with the use of machine learning-
based design at the start of an LDBT cycle, it is likely that multiple
iterations of designing, building, and testing biological systems will be
required. There exist numerous machine learning strategies to effi-
ciently search protein sequence space based on data generated during
the Test stage. Traditional machine learning directed evolution (MLDE)
utilizes sequence-function data, often with one-shot encoded muta-
tions, to predict high-performing protein variants. MLDE has also been
used with protein language models to more effectively capture long-
range sequence dependencies and evolutionary information. For
example, deep mutational scanning was used to train a machine learning
model to predict membrane activities of antimicrobial peptides,
resulting in the identification of a peptide with reduced toxicity but
retained activity**. Bayesian optimization is another approach that
allows protein engineering with few experimental measurements®.
Usually, Gaussian processes are used to model both the predicted
function and the uncertainty of protein variants. Such an approach was
used to improve fatty alcohol production by two-fold with fewer than
100 experimental measurements*’. Beyond single rounds of predic-
tions, EVOLVEpro recently demonstrated success in engineering six
different proteins with relatively few experimental data points by com-
bining a protein language model with a regression model to learn the
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Fig. 2 | Learn-design-build-test instead of design-build-test-learn. Centering powerful new machine learning capabilities at the start of biotechnology development,
complemented by high-throughput Build and Test assays, enables a shift towards LDBT instead of DBTL.

relationship between sequence embeddings and experimentally deter-
mined data®’. By starting with small number of data points, a random
forest regression model could be trained, and then after each round
additional data points were added to the dataset to retrain the model,
allowing the successive prediction of multi-mutant variants from single-
variant data, a typically challenging task in engineering studies.

The development of predictive machine learning models depends
on the availability of high-quality training data. Initiatives such as the
Align Foundation facilitates the generation of open-access datasets to
allow researchers to build on one another’s work*s, Community-driven
design challenges play a key role, allowing researchers to evaluate and
iteratively improve predictive models in protein engineering. How-
ever, the push for open-access data can be accompanied by tensions;
for example, BaseData by Basecamp Research includes billions of
protein sequences collected from diverse environments, and their
public release raises questions regarding benefit sharing, legal frame-
works, and data ownership*. Conversely, private companies are
expansively developing proprietary datasets that may be inaccessible
to the broader synthetic biology community, while new algorithms are
also being held increasingly behind walls, at least upon initial release.

Ultimately, we envision enhanced machine learning approaches
combined with cell-free protein synthesis as a facile way to express the
necessary proteins (both homologs and mutants), wherein generalized
assays can be used to quickly assess expression, function, and protein-
protein interactions. Machine learning enhances the Learn phase by
allowing zero-shot predictions of beneficial protein variants as well as
enabling rapid analysis of experimental data. Cell-free systems (up to*°
and including synthetic cells®) accelerate the Design, Build, and Test
phases through rapid evaluation of genetic constructs. Looking ahead,
we anticipate that LDBT cycles may be limited primarily by the speed
of DNA synthesis and data generation for models. It may be that
bespoke, local DNA synthesis, rather than corporate delivery, will be
the most viable option for the future to address this challenge, further
revising where economies of scale may lie.

To extend these advances beyond protein engineering, further
progress is required to expand modeling to additional biomolecules,
pathways, and ultimately metabolism as a whole, and to continue to
develop scalable methods to model even complex biological systems
and functions. The greatest obstacles remain the scarcity of high-
quality data and the difficulties inherent in its analysis™. Yet, the pro-
mise of rapidly going from “desired function” to “designed sequence” to
“working protein/function” in a reimagined LDBT cycle holds promise
to unlock the full design space of biology.
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