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Abstract

Point-of-use diagnostics based on allosteric transcription factors (aTFs) are promising tools for
environmental monitoring and human health. However, biosensors relying on natural aTFs
rarely exhibit the sensitivity and selectivity needed for real-world applications, and traditional
directed evolution struggles to optimize multiple biosensor properties at once. To overcome
these challenges, we develop a multi-objective, machine learning (ML)-guided cell-free gene
expression workflow for engineering aTF-based biosensors. Our approach rapidly generates
high-quality sequence-to-function data, which we transform into an augmented paired dataset to
train an ML model using directional labels that capture how aTF mutations alter performance.
We apply our workflow to engineer the aTF PbrR as a point-of-use diagnostic for lead
contamination in water. We tune the sensitivity of PbrR to sense at the U.S. Environmental
Protection Agency (EPA) action level for lead and modify the selectivity away from zinc, a
common metal found in water supplies. Finally, we show that the engineered PbrR functions in
freeze-dried cell-free reactions, enabling a diagnostic capable of detecting lead in drinking water
down to ~5.7 ppb. Our ML-driven, multi-objective framework—powered by directional tokens—
can generalize to other biosensors and proteins, accelerating the development of synthetic

biology tools for biotechnology applications.



Introduction

Bacteria constantly sense their environment to regulate gene expression and mitigate toxins.
Many of these sense-and-respond systems rely on allosteric transcription factors (aTFs), which
bind to specific DNA operator sequences and undergo conformational changes only when a
cognate small-molecule inducer is present. This mechanism activates or represses downstream
gene expression and has inspired the design of gene circuits using an aTF and its operator as
biosensors for specific ligands'. Such biosensors have shown great promise as synthetic
biology tools?® and molecular diagnostics for environmental (e.g., pesticides®, heavy metals’,

and contaminants®®) and human health (e.g., disease markers'®, hormones') monitoring#%.

Unfortunately, natural aTFs usually do not meet the performance requirements for real-world
applications without engineering?. Properties such as sensitivity, selectivity, dynamic range, and
response time often need improvement. High-throughput screening and directed evolution can
address these limitations, but engineering aTFs remains difficult due to their allosteric nature?6-?
and the challenge of simultaneously tuning multiple parameters (e.g., sensitivity and
selectivity)?®%0. A key bottleneck is the ability to quickly map sequence—function relationships

across multiple ligands, capturing both successes and failures, to inform forward engineering.

Machine learning (ML)-guided directed evolution has transformed the way we navigate vast
protein sequence-function landscapes, making exploration faster and less reliant on exhaustive
experiments3'-3°, At its core, ML supports protein engineering in two complementary ways:
predictive models, which score given sequences or structures, and generative models, which

propose new ones.

Predictive models act as evaluators to screen predefined libraries and prioritize candidates for
experimental validation. Examples include zero-shot predictors, which infer fitness directly from
evolutionary or structural context using pretrained protein large language models (pLLMs)*0-46,
and supervised models trained on sequence-function datasets to guide optimization for specific
tasks such as catalysis**4"-*0, Classification-based models, like DeepTFactor®! (which identifies
transcription factors) and ESM-DBP5%? (which predicts DNA-binding proteins), represent another
subset. These models excel at discovery and annotation tasks but mainly identify candidate
scaffolds rather than optimize functional properties. Traditional ML-directed evolution (MLDE)

approaches can be used to combine predictive models with manually designed libraries3'-32:34-



3783 'making results sensitive to predictor accuracy, prior assumptions, and biases in the training

data.

Generative models, by contrast, create novel sequences or structures tailored to specific
objectives. Examples include structure-generating models such as RFdiffusion®°°, which create
protein backbones that scaffold functional motifs, and mutation proposing models such as
FuncLib®, which suggest active-site substitutions without manual library construction. However,
such models have limitations: they often depend on high-quality structural information and
abundant sequence homologs, and may fail for dynamic or allosterically regulated proteins.
More recent approaches, such as preference-based learning (e.g., ProteinDPO®’), incorporate
relative comparisons between variants, but their scope is narrow—focusing on single objectives
and lacking adaptability for tasks where tradeoffs between properties must be considered. This

is especially relevant for biosensors where increasing sensitivity often reduces selectivity.

To overcome existing limitations, we set out to develop a directional, multi-objective ML model
for engineering aTF-based biosensors that relies on a controlled extrapolation framework
(Figure 1)%. This model uses a sequence-to-sequence architecture to learn how amino acid
sequence changes influence protein function, guided by tokens that encode the direction of
property change. This approach eliminates the need for downstream predictors and allows
direct manipulation of the model’s latent space. Unlike preference-based models that only
highlight improvements, our directional token approach exposes the model to both beneficial
and detrimental mutations within the same training framework. For example, when the model
sees a sequence pair labeled with 'decrease/increase' tokens, it simultaneously learns which
mutations harm the first property while benefiting the second. This bidirectional learning

provides a rich training signal about the mutational landscape®.

We implement an active learning framework combining this directional ML model with a cell-free
expression (CFE) system. The CFE system uses crude cellular extracts and reaction
components (e.g., energy substrates, amino acids) to enable high-throughput transcription and
translation of DNA templates outside living cells®®-2, Building on our previous work®*, we
integrate ML-guided design to achieve multi-objective optimization of the lead-responsive aTF
PbrR, originally from the megaplasmid pMOL30 of Cupriavidus metallidurans®. Lead was
selected because of its severe public health impact®-8. In the United States alone, there are an

estimated 9.2 million lead service lines still in use®. Using the open, scalable CFE system, we



rapidly generate positive and negative sequence-function data across multiple ligand conditions
to train the model and iteratively refine predictions. This integrated, data-driven workflow
enabled engineering of PbrR variants balances sensitivity and selectivity, meeting performance

requirements for lead detection in drinking water.

Results

PbrR as a model allosteric transcription factor for biosensor design

PbrR is a transcriptional activator that can function in a cell-free biosensing system to detect
lead®*. Upon ligand binding, PbrR undergoes a conformational change to distort the cognate
operator site it is bound to, which initiates transcription of a downstream gene’®, such as the
superfolder green fluorescent protein (sfGFP) reporter gene. However, wildtype PbrR does not
have the sensitivity and selectivity requirements for diagnostic applications. The U.S.
Environmental Protection Agency (EPA) action level starting in 2027 for lead is 0.048 uM lead
(10 ppb)”* but the wildtype PbrR-based biosensor does not induce sfGFP expression in cell-free
systems until ~1 uM lead (Figure 2A). Wildtype PbrR also reacts with other divalent ions, such
as zinc’?. Zinc is commonly found in tap water due to dissolution from pipes, and zinc
bconcentrations below its EPA maximum limit (76 uM or 5 ppm)® strongly activate PbrR-based
biosensor (Figure 2A). The cross reactivity of PbrR towards lead and zinc has been studied. An
in vivo directed evolution study improved lead selectivity of PbrR but did not address lead
sensitivity. Additionally, our previous engineering campaign improved lead sensitivity of PbrR to
the EPA action level®, but the best mutants also activate in the presence of zinc (Figure 2B),

limiting their utility for diagnostic applications due to false positives.

Generating an initial dataset for ML model training

Towards diagnostic application requirements, we sought to simultaneously tune two biosensor
characteristics using an ML-guided, design-build-test-learn (DBTL) workflow. This required an
initial sequence-function dataset on biosensor activity towards lead and zinc to train the model
(Figure 3A).

To generate this data, we screened 1,155 mutants that we previously created when engineering
PbrR only for increased lead sensitivity®*. These mutants included an alanine scanning
mutagenesis (145 mutants), site saturation mutagenesis (931 mutants), and selected

combinational mutagenesis (79 mutants). Using liquid handling robotics to perform a plate-



based high-throughput screen, we carried out 3,465 unique reactions at 1 uL scale to test each
mutant at a low concentration of lead (1 uM), high concentration of zinc (30 uM), and no ligand
condition. The impact of each mutation from the alanine scanning mutagenesis (Figure 3B) and
site saturation mutagenesis (Figure 3C) libraries on biosensor sensitivity relative to wildtype
towards 1 uM lead and 30 uM zinc is represented in the heatmaps as normalized fold change
(FC)®*. For a mutation that was in a combinatorial mutant, the mean normalized FC of all
mutants containing that mutation is represented. The mutability of PbrR for ligand sensitivity is
not limited to the ligand binding domain, which highlights the difficulty of rational engineering of
allosteric proteins. For example, mutations at residues in the DNA binding domain (e.g., M60,
P61 and D64) and in the helix-turn-helix domain (e.g., K104 and L107) had diverse effects on

activity.

A large shift in biosensor activity was not expected. Instead, mutations that result in small
increases in lead sensitivity (lead normalized FC > 1) and small decreases in zinc sensitivity
(zinc normalized FC < 1) would be important over iterative engineering rounds towards the goal
of lead selectivity over zinc (Figure 3D). An ideal mutant has a high normalized FC to lead and a
normalized FC to zinc of zero. Because wildtype PbrR displays no activity towards 1 uM lead, a
normalized FC to lead greater than one indicates increased sensitivity. In contrast, wildtype
PbrR has strong activity towards zinc so the normalized FC to zinc must be close to zero to
indicate no zinc sensitivity. In this initial set, mutants generally displayed the same change in
activity towards lead and zinc, either sensitivity towards both ligands increased or decreased
(Figure 3E).

Creating a paired dataset for the ML model

Our ML-model is trained on pairs of mutants, with each pair labeled according to the observed
direction of functional change, rather than individual sequences that are used in traditional ML-
methods. This is a departure from previous approaches and builds on the lterative Controlled
Extrapolation framework®®. Pairing data also eliminates the need for numerical predictors, which
can be unreliable when data is scarce. By training the model on sequence comparisons with
directional labels, it learns generalizable patterns. We track how each functional label changes
from one mutant to another, generating directional categories for each pair of mutants. For
example, with two objectives, we consider four directional categories (e.g., increase/increase,
increase/decrease, decrease/increase, and decrease/decrease), each assigned a unique token

(Figure 4A). As the number of objectives increases, the number of possible categories grows,



but the model’'s task remains the same, which is to learn the sequence edits associated with
each directional shift. This approach reduces the model’'s tendency to memorize specific
sequences, improving its ability to extrapolate and suggest mutations in unsampled regions of

the mutational landscape.

Active learning-guided optimization of a cell-free biosensor based on PbrR

With an ML model framework designed and trained on an initial dataset (Round 0), the first
round of PbrR engineering towards increased lead sensitivity and decreased zinc selectivity
consisted of 382 computationally predicted mutants ranging from 15- to 6"-order mutants (i.e.,
amino acid changes). This number was chosen to match the capacity of the 384-well plate that
is used in our assay, while leaving wells open for controls. We screened these mutants against
a low concentration of lead and high concentration of zinc to identify mutants with lead
selectivity over zinc. Like Round 0, we observed that most mutants displayed either complete
loss of function or increased lead and zinc sensitivity (Figure 4B). However, there were two
mutants (D64K_N83F and N831_K104V) that showed a higher fluorescent response to lead than
zinc (Supplementary Figure 1). We validated these mutants in experiments set up by hand to
confirm the lead selectivity over zinc (Supplementary Figure 2). The altered residues of these
mutants aligned with the ones we previously identified in Round 0 as being important for lead
selectivity over zinc, which motivated us to analyze the residue exploration of the model. We
calculated “Frequency in mutants” as the number of mutants that included a mutation at the
specified amino acid residue. In Round 1, the model targeted 62 residues with a bias towards 11
residues that were each in at least 10% of mutants. Additionally, we observed that mutating
residues N83 and P143 more often resulted in increasing lead sensitivity and decreasing zinc

sensitivity.

The two mutants from Round 1 that displayed lead selectivity over zinc had low fluorescent
output, which is a limitation for use in a diagnostic. To address this, we began to train the model
on normalized dynamic range (DR) in addition to normalized FC in Round 2. DR is the
concentration of sfGFP synthesized in the absence of ligand (leak) subtracted from the
concentration of sfGFP synthesized in the presence of ligand. We normalized the DR of each
mutant to wildtype to more clearly observe relative activities and normalize for noise associated
with assays run on different days. Negative normalized DR values were set to zero for model
training. FC is a better sensitivity measure of mutants while DR better reflects the signal

response of mutants.



In Round 2, we screened 200 computationally predicted higher-order mutants, with 100 mutants
predicted from the model trained on normalized DR data at lead and zinc and the other 100
mutants predicted from the model trained on normalized DR data at zinc and normalized FC
data at lead. As the model became better informed by data from earlier rounds, fewer mutants
were needed to explore the sequence space effectively. Testing 100 mutants per metric allowed

us to compare the performance of each training strategy while reducing DNA synthesis costs.

Overall, we observed a modest increase in the number of mutants with a higher normalized FC
to lead relative to zinc (Figure 4C). However, most mutants still showed a stronger signal
response to zinc than lead (Supplementary Figure 1). Mutants predicted from the model trained
on lead normalized FC and zinc normalized DR generally had higher leak. Despite this, the ML
model began proposing hits with higher order mutations that were not obvious or additive. For
example, the model predicted the mutant N831_K104V_H106A_P143R, which included the
H106A mutation, a substitution not previously shown to increase lead sensitivity on its own. This
mutant displayed higher signal to lead than zinc and was validated in a by-hand experiment
(Supplementary Figure 2). Additionally, we observed a decrease in the number of residues (48
residues, 33% of protein) explored and mutated in this round of computational predictions. The
bias towards key residues, such as N83, highlights the importance in tuning activity towards

increased sensitivity for lead and decreased sensitivity to zinc simultaneously.

We noted that the three “winners” from Round 1 and 2 contained overlap mutations at N83 and
K104 and decided to perform a round of rational engineering, Round 2b, by creating ten higher
order (4""- and 5™-order) mutants from the six unique mutations at five residue positions from
previous winners, consisting of K64D, N83I or N83F, K104V, H106A, and P143R (Figure 4D).
These designs were informed directly by prior ML-guided rounds and experimental validation,
reflecting a strategic recombination of high performing substitutions. While these rational
variants were not proposed de novo by the model, they drew directly from the higher order
combinations that the model has already prioritized, which is a targeted exploitation of model
discovered signals. Targeted exploitation of high performing mutants through combination has
been observed to improve sensor activity by combining multiple mutations in our previous PbrR
engineering efforts®. All mutants displayed significantly higher normalized FC to lead than to
zinc. Importantly, the validation of these mutants showed that mutants
D64K_N83I_K104V_H106A and D64K_N831_K104V_H106A_P143R exhibited lead selectivity



over zinc at a lead concentration (0.05 uM) near the EPA action level of lead (0.048 uM)

(Supplementary Figure 2).

We next trained the ML model on Round 2b data and observed a significant improvement in the
computational predictions because the training data now contained several mutants with better
lead sensitivity than zinc sensitivity. For Round 3, the ML model was trained on two datasets: (i)
normalized FC at lead and zinc, and (ii) normalized DR at lead and zinc. Overlap mutants that
were predicted from both training datasets were tested. Of the 108 mutants screened, 75
mutants had a normalized FC to lead greater than one and to zinc less than one (Figure 4E)
and 34 mutants had higher fluorescent signal to 1 uM lead than to 30 uM zinc (Supplementary
Figure 1). We were again able to screen a reduced library size of 108 mutants because the
large dataset from previous rounds increased the reliability of model predictions. The ML model
limited its exploration to 32 residues and strongly biased mutations at residues seen in Round
2b. The success of Round 2b motivated another rational round of combinatorial mutagenesis
with the top 4 mutants from validating Round 3 hits (Supplementary Figure 2). We designed a
library of 169 higher-order mutants (4"-, 5"~ and 6'"-order) at 6 residues with 10 unique
mutations (Figure 4F). In Round 3b, all mutants had a higher normalized FC to lead than to zinc

and 137 mutants have lead selectivity over zinc (Supplementary Figure 1).

As our evolutionary scan traversed the fitness landscape, the diversity of mutated residues
positions decreased. The top mutants from each round only covered 10 residues and 16
mutations in total (Figure 5A) and the incremental additional of key mutations through the
rounds increased mutant lead sensitivity at relevant lead concentrations while maintaining low
zinc sensitivity (Figure 5B). Although mutations L107C and G128l increase lead sensitivity, they
also cause high leak and were disfavored in later rounds. Mutations D64K, K104V, and N83lI
were identified early in Rounds 0 and 1 as important for the desired biosensor characteristics.
Then, mutations H106A and P143R shifted PbrR towards lead selectivity over zinc at a lead
concentration 60-fold lower than the zinc concentration. Finally, the addition of mutation 190A in
Round 5 eliminated zinc sensitivity. Single mutants H106A, P143R, and I190A did not show
beneficial behavior, which highlights that ML model’s ability to capture unusual combinations.
Some of the mutations are also biophysically unexpected (e.g., D64K, P143R), further
highlighting the power of the model.



The top mutants of Round 3b exhibited high sensitivity to lead at the EPA action level without
activation by zinc, indicating low likelihood of false positive results to due zinc crosstalk.
Importantly, the ML model and rational design served complementary roles throughout the
engineering process. Rational design efficiently built on validated mutations by combining
previously successful substitutions into higher order mutants, while the model proposed
unexpected non-additive combinations where some individual mutations alone offered little
benefit. When rationally designed mutants were incorporated into subsequent ML training, they
strengthened the model’s confidence in key regions of the sequence space and improved its
ability to prioritize synergistic mutations. This exchange between computationally proposed and
experimentally guided recombination enabled more focused searches and was effective in

realizing the final design.

Freeze-dried, cell-free PbrR biosensors as a diagnostic assay for lead in drinking water
Cell-free biosensors are promising point-of-use diagnostics for water contamination because
they can be lyophilized for stable storage and transportation and then rehydrated with the water
sample®’*. We next tested if our PbrR-based biosensor could be freeze-dried and remain
functional to detect lead in water samples (Figure 6A). Instead of aTF expression from a DNA
template during a CFE reaction, we created extracts enriched for the aTF (i.e., the aTF was
expressed in the extract source strain prior to cell lysis) to improve biosensor performance (e.g.,
increased sensitivity and dynamic range)®®. We made enriched extracts with the top three
mutants from Round 3b (Supplementary Figure 3), and mutant
D64K_N83Il_I90A_K104T_H106A_P143R (Figure 6B) exhibited the best biosensor performance
with low leak and the highest signal response to 0.05 uM lead (Figure 6C).

To evaluate the potential of this mutant as a diagnostic, we next demonstrated that lyophilization
has no negative impact on sensor function (Figure 6D), and that the mutant only exhibits cross-
reactivity to mercury when tested against a panel of divalent metal ions that may be found in
municipal water (Supplementary Figure 4). Then, based on previous work for developing point-
of-use water quality diagnostics’, we modified the reporter system of the biosensor to express
the enzyme catechol 2,3-dioxygenase (C23DO), which cleaves colorless catechol into the
yellow pigment 2-hydroxymuconate semialdehyde (Figure 6E). Using an enzymatic, colorimetric
reporter improves the kinetics of the reaction® and provides a visible difference between ligand
conditions (Figure 6F). We rehydrated lyophilized sensor reactions with municipal water

samples that were collected in Evanston and Chicago, lllinois. Metal concentrations in these



samples were quantified using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). We
observed both quantitative and qualitative differences in sensor responses between the lead-
free water sample and those containing lead (0.03 — 0.13 uM; 5.71 — 26.41 ppb), indicating that
this PbrR-based biosensor could be used as an effective point-of-use diagnostic for detecting

lead at the legal limit in real-world water samples (Figure 6G).

Discussion

In this work, we established a directional, multi-objective ML-guided cell-free platform for tuning
multiple transcription factor biosensor characteristics simultaneously. The ML model uniquely
adapted a controlled extrapolation framework for multi-parameter optimization and trained a
sequence-to-sequence language model on paired mutant data. Using a high-throughput CFE
screening assay, we showcased the ability to rapidly screen libraries to engineer lead-
responsive transcription factor PbrR to have lead selectivity over zinc at lead concentrations at
the EPA action level. Being able to discriminate between two similar divalent cations, Pb?* and

Zn?*, is an important example of using ML-guided methods for protein design.

A key feature of our work is the high efficiency of the ML model to optimize over multiple
objectives, as it enabled us to screen less than 1% of the search space to identify mutants with
the desired selectivity and high sensitivity to lead. Our ML framework is especially suitable for
design problems where optimizing one function may negatively affect another, requiring explicit
definition of multiple objectives. It is also advantageous in data-scarce situations, as the use of
paired data synthetically expands the training set. Additionally, by eliminating the need to tune or
retrain separate predictors for each new objective, our method provides flexible multi-objective
optimization within a single model. By incorporating directional tokens, the model can be flexibly
prompted to pursue any design objective over any scale, generating any desired number of
candidates tailored to experimental capacity. This enables efficient exploration of vast

mutational landscapes without manual intervention.

Through efforts to train our ML model and then subsequent screening rounds, we assayed
2,024 mutants that explored all residues positions to gain an understanding of the positive and
negative sequence-function landscape of PbrR. By thoroughly optimizing the high-throughput
workflow®®, we generated high quality data to train a model to recognize patterns that would be
difficult to do without computational tools. For example, mutations at residue 190 provided little

to no shift in activity towards lead selectivity over zinc in Round 1 and 2. In workflows that rely



only on rational methods, such as combinatorial mutagenesis, this residue would likely not have

been explored in later rounds but proved essential for our goal in Round 5.

At the end of the engineering campaign, we identified 6 unique residues positions that need to
be mutated together to shift the selectivity of PbrR towards lead and away from zinc. These
residues span all domains of PbrR: D64 is in the DNA binding domain (DBD), N83, 190, K104,
and H106 are in the helix-turn-helix domain (HTH), and P143 is in the ligand binding domain
(LBD). The distribution of the mutations highlights the limitations of using rational engineering
approaches for allosteric proteins as it is difficult rationalize why this specific combination of
mutations would be important for tuning ligand selectivity. We hypothesize that these mutations
are impacting metal ion coordination, DNA affinity, homodimerization, and allostery. For
example, Pb?* typically has more flexible coordinate geometries with proteins compared to Zn?*,
which prefers tetrahedral coordination”®””. The mutations we identified may subtly reshape the
binding pocket’s geometry or electrostatics to disfavor zinc coordination and improve lead
coordination, as well as increase cross reactivity to mercury (Supplementary Figure 4).
Additionally, mutations in the HTH motif may influence the allosteric communication between the
LBD and DBD domains, altering the transcriptional response of the biosensor to different
metals’®. More broadly, rapidly building datasets to navigate vast protein sequence space
remains difficult. We expect that our dataset will help support general advances in ML-model

development for synthetic biology.

We anticipate that our approach to tune biosensor characteristics can be applied to any
transcription factor but may require modifications to the experimental set-up and ML model
parameters. For example, when working with a repressor transcription factor, an additional
incubation step when setting up a CFE biosensing reaction may be required to allow for the
transcription factor to bind to its operator site to reduce high leak. Depending on the mutability of
a transcription factor and the degree of targeted change in biosensor activity, various ML
parameters will need to be explored. A recent study showed that thermodynamic and kinetic
models were able to provide mechanistic reasoning for allosteric modulation of ligand selectivity
in transcription factor MAX. Binding mechanisms were revealed in kinetic measurements’.
Incorporating these types of models and data collection into our workflow could be beneficial in

engineering transcription factor biosensors.



In terms of applications, just as freeze-dried CFE systems can be used for manufacturing®’-82
and education®-%, our engineered PbrR-based biosensor holds promise for point-of-use
diagnostics. For example, the system can be freeze-dried for easy storage, distribution, and
activation by just adding water. In addition, the system is low-cost (i.e., ~10 cents per 15-uL
reaction®). Furthermore, we showed a 500-fold improvement in sensitivity from a previous
report®, while avoiding Zn selectivity problems that have plagued past efforts with false
positives®*. Finally, we demonstrated that the biosensor works in real-world municipal water
samples to detect lead. Future improvements will seek to accelerate time to response to

minutes instead of hours, as has been accomplished with the ROSALIND system?®.

In sum, our ML-guided, cell-free workflow improved the process of exploring sequence-function
search space to tune transcription factor-based biosensor characteristics by overcoming
traditional directed evolution challenges with allosteric proteins and limitations of predictive
scoring ML models. Looking forward, we anticipate that our active learning approach will
accelerate the development of specialized diagnostics, and perhaps any engineered protein, for

numerous synthetic biology applications.

Methods

Multi-Objective Controlled Extrapolation

We extended the Iterative Controlled Extrapolation (ICE) framework®® to enable multi-objective
protein design without relying on numerical downstream predictors. ICE is a transformer based
language model that performs single objective, iterative rounds of sequence refinement. In each
round, the model predicts small edits to a sequence to gradually achieve attribute values
beyond the training distribution. Our approach leverages a sequence-to-sequence transformer
trained directly on paired mutant comparisons, where each pair is labeled with a discrete token
indicating the direction of functional change across one or more objectives. Unlike traditional
iterative design strategies that involve multiple or iterative rounds of generation, our approach
uses only a single generation step. This generation is seeded from a diverse set of
experimentally validated sequences that meet specific starting criteria (e.g., high lead response
and low zinc response). By avoiding multiple rounds, we reduce the risk of the model drifting
away from experimentally reliable regions of sequence space. This encourages novelty through
diversity in the initial seeds and enables controlled extrapolation to new designs while
maintaining proximity to known data. A pseudocode representation of the model training and

sequence generation procedures is provided in the Supplementary Information as



Supplementary Note 1 and Supplementary Note 2, respectively. The model architecture, along
with the training and generation workflows, is illustrated in Supplementary Figure 7. These
algorithms are described in detail in the following sections.

Training Data Construction
Let X € AL denote a protein sequence of length L, where A is the set of all amino acid single
letter codes. Let f be the unknown multi-objective function that maps each sequence to a vector
of j scalar measurements, where j is the number of objectives. In our case, we define:

(D F) = [fzn (X)), fpp (X1,
where f,,(X) and fp, (X) denote the measured fold change or response to zinc and lead,
respectively. Note that the model is trained without access to these numerical values. They are

used only to assign directional labels. We define the training data as a set of N sequence pairs
; : N
{(XI(L),XS))} , Where each pair represents edits in sequence or mutations from X; to X,, which
i=1

may involve one or more amino acid substitutions. From a set of M experimental samples, up to
(’2”) unique pairs can be formed, enabling substantial data augmentation, especially when M is
small. To ensure biological relevance and robust training, we include only those sequence pairs
where the measured change in objective exceeds the estimated experimental noise threshold

7,.. For each pair (X;,X,) and each objective k, we assign a direction label:

(inc), fiel(Xz = X1) > 1y
(dec), fi(Xz = X1) < 7

Each label vector d® € {(inc),(dec)}’ is prepended to the input sequence as a set of tokens.

(2) label,, = {

We ensure approximate balance across all 2/ possible combinations of directional labels to

avoid training bias.

Model Architecture and Training
We use a transformer encoder-decoder model based on the T5 architecture, specifically the
ProtT5-XL-UniRef50 model from Rostlab®’. We added two special tokens, (inc) and (dec), to

represent directionality for each objective.

During training, the model receives an input prompt consisting of the directional tokens followed
by the amino acid sequence X; , and it is trained to autoregressively generate the output

sequence X,. The conditional probability of generating X, given the input is modeled as:

(3) Po(X2ld, X1) = Tlt=1Po(Xoe|d, X1, Xz <),



where X, , is the amino acid at position t in the target sequence X, , X, -, is the partial sequence
of X, up to but not including position t, 8 is the model parameters learned during training, and L
is the length of the target sequence. The model is trained to maximize the conditional log-
likelihood of the target sequences across the dataset of N labeled sequence pairs:

(4) L(6) = T log Py (X{]a®, ("),

where Xl(i), Xz(i), d® are the source sequence, target sequence, and directional label for the i-th
training example, respectively. Loss is computed via token-level cross-entropy, and the model is
optimized using AdamW with a learning rate of 1e-4 and weight decay of 1e-4, using Hugging
Face’s Seq2SeqTrainer. During training, to assess whether the model is generating valid

sequences consistent with the training distribution, we use the SacreBLEU score®,

To minimize memory usage, we apply the Low-Rank Adaptation (LoRA) framework for
parameter efficient finetuning®. Low-Rank Adaptation (LoRA) is used to efficiently finetune large
pretrained language models without updating all weights. By injecting trainable low-rank
matrices into frozen transformer layers, LORA drastically reduces the number of parameters that
need to be learned, saving memory and computation while allowing the model to adapt to new
tasks or datasets. We set the rank of the update matrices to 16, applied a LoRA scaling factor of
32, and used a dropout probability of 0.05 in the LoRA layers. More details on model training

and parameters are shown in Supplementary Table 1.

Inference and Design

At inference time, a set of seed sequences are provided along with the desired directional token
(e.g., (inc) (dec) for increasing lead response while decreasing zinc response). For our first
computational round, we use as seeds all sequences that show higher lead response and lower
zinc response than the wildtype. The model then generates new sequences conditioned on the

prompt.

Because the model operates directly in sequence space, it can be flexibly prompted with any
combination of direction tokens without retraining. We use top-k sampling (k = 10) to generate
diverse candidates. For each seed sequence, 20 candidates were proposed, and we filter by
edit distance or number of mutations from the wildtype sequence as needed. This framework
enables controllable and scalable exploration of the mutational landscape, guiding design

toward functional improvement under user-define multi-objective constraints.



DNA library generation

The DNA for wildtype PbrR was from Addgene (ID 167215). The protein sequence for this
wildtype PbrR was from Cupriavidus metallidurans (Uniprot Q58AJ5). In this plasmid, the T7
promoter is used to drive expression of the PbrR gene. All aTF DNA used in this study follow
this design with changes only to the PbrR sequence to create the mutants. All DNA sequences
can be found in the Supplementary Data 1 file. Plasmid DNA from Twist Biosciences was
purchased for the alanine scanning mutagenesis library. For all other mutant libraries, eBlocks
from Integrated DNA Technologies (IDT) were ordered with homology to the pJL1 backbone.
The pJL1 backbone was ordered as a gBlock from IDT and amplified via PCR. The eBlocks and
pJL1 backbone were assembled into plasmids using standard Gibson Assembly methods with a

30 min incubation at 50 °C.

The cell-free generation of mutant libraries were prepared based on a previously described
method®3. Briefly, with the commercially purchased or Gibson assembled plasmids as the DNA
template, linear expression templates (LET) were generated via PCR reaction using Q5 Hot
Start DNA Polymerase (NEB) in 384-well PCR plates (Bio-Rad). The primers used to generate
the LETs were 5 CGATAAGTCGTGTCTTACCG 3’ and 5 GCATAAGCTTTTGCCATTCTC 3.
LET yields were quantified using QuantiFluor dsDNA System (Promega). The Echo 525 was
used to normalize LET DNA to a concentration of 4.5 ng/uL (5 nM). All transfer steps between
plates, except for the Echo normalization step, were done using an Integra VIAFLO liquid

handling robot.

Cell extract preparation

Extract from BL21 Star™ (DE3) (Thermo Fisher Scientific C601003) optimized for endogenous
transcription machinery was prepared based on previous reports®®-°2, The reporter plasmids
used in this study are regulated under bacterial ’° promoters, and for cell-free expression of
these plasmids, the extracts were processed with ribosomal runoff reaction and subsequent
dialysis. In summary, an overnight culture was used to inoculate 2xYTP media (16 g/L tryptone,
10 g/L yeast extract, 5 g/L sodium chloride, 7 g/L potassium phosphate dibasic, 3 g/L potassium
phosphate monobasic, pH 7.2) to a target starting optical density at 600 nm (ODeoo) of 0.05. The
culture was grown at 37°C shaking at 250 rpm. At ODeoo = 0.5, isopropyl 3-D-1-
thiogalactopyranoside (IPTG) at a final concentration of 1 mM was used to induce expression of
T7 RNA polymerase. The cells were grown to an ODsgo 0f 3.0 before being harvested and

centrifuged at 5,000 x g for 15 min at 4°C. The resulting cell pellet was washed three times with



25 mL of cold wash buffer (14 mM magnesium glutamate, 60 mM potassium glutamate, 10 mM
of Tris base, pH 7.8). Cells were pelleted between each wash step via centrifugation at 10,000 x
g for 2 min. After pouring off the supernatant of the final wash step, the cell pellet was weighed
and resuspended in 1 mL of wash buffer per gram of cell pellet. Cells were then lysed with a
single pass through an Avestin EmulsiFlex-B15 homogenizer at 20,000-25,000 psig. The lysed
sample was centrifuged for 10 min at 12,000 x g at 4°C. The resulting supernatant underwent
runoff by wrapping the tubes in aluminum foil and incubating them at 37°C with shaking at 250
rpm for 1 hr. The sample was centrifuged again for 10 min at 12,000 x g at 4°C and the resulting
supernatant is dialyzed for 3 hr 4°C using a 10K MWCO dialysis membrane slowing spinning in
dialysis buffer (14 mM magnesium glutamate, 60 mM potassium glutamate, 5 mM Tris base, 1
mM DTT, pH 8.0). After dialysis, the sample was centrifuged for 10 min at 12,000 x g at 4°C and

the supernatant (cell extract) was aliquoted, flash frozen, and stored at -80 °C.

For extracts enriched with a PbrR mutant, the above method was followed with some
modifications. Within the same week as extract preparation, BL21 Star™ (DE3) cells were
transformed with a sequence-verified plasmid of the mutant and plated on LB agar plates
containing 50 mg/mL Kanamycin. Overnight cultures were grown with 50 mg/mL Kanamycin.
During cell growth in 2xYTP media (no antibiotic), cells were induced at ODgoo 0f 0.5 with 0.5
mM IPTG to induce PbrR mutant expression and grown for 2 hours post-induction. After
washing the cells three times and resuspending in wash buffer, cells were lysed using the
QSonica Q125 sonicator with a 3.175 mm diameter probe at a frequency of 20 kHz and 50%
amplitude by 10 s ON/OFF pulses for two rounds of 60 s (delivering ~400 J per round). The
samples were kept on ice for 10 min between sonication rounds. After sonication, the lysed cells
were centrifuged for 10 min at 12,000 x g at 4°C. The resulting supernatant was processed via

runoff and dialysis and then flash frozen for storage at -80 °C.

Cell-free expression biosensing reactions

Similar to previous works®%, CFE reactions were carried out using the PANOXx-SP system%-%,
To inhibit nuclease activity, 30 pg/mL GamS (NEB) was added to reactions with LETs. The
reporter plasmids (pPbrR-sfGFP, Addgene ID 167222 and pPbrR-XylE (C23DO enzyme),
Addgene ID 167254) were purified from overnight cultures using Qiagen HiSpeed® Plasmid
Maxi Kit. Echo-assisted assembly of 1-uL CFE reactions were performed® and after 15 hr

incubation at 30°C, sfGFP was quantified by measuring fluorescence on a Biotek Synergy Neo2



plate reader at excitation of 485 nm and emission of 528 nm. By-hand validation experiments
were carried out using aTF LETSs purified with Zymo DNA Clean & Concentrator kit as 10-puL
reactions in black 384-well plates, clear flat-bottom plates (Greiner #781906). These reactions
were incubated for 15 hr at 30°C in a BioTek Synergy H1 plate reader with reads every 5 min at
excitation of 485 nm and emission of 528 nm. Bar charts represent endpoint data at 15 hr. For
each enriched extract, volume (% v/v) optimizations were performed. Reactions using enriched
extracts were also done as 10-ulL reactions in 384-well plates (Greiner #781906) and incubated
in a BioTek Synergy H1 plate reader for kinetic data collection. Fluorescence was quantified by
fluorescein isothiocyanate (FITC) standard curves (Sigma-Aldrich 46950), which were created
via dilutions 50 mM sodium borate at pH 8.5. To quantify the color changes in sensing reactions
using the catechol reporter, 10-uL reactions in 384-well plates (VWR 76446-984) were
incubated in a BioTek Synergy H1 plate reader at 30°C for 12 hours with reads every 2 min at
absorbance 385 nm for kinetic data collection. Pictures of the catechol reactions were taken
using an iPhone 13 Pro. Lead solutions were prepared from lead chloride powder (Sigma-
Aldrich 268690) and zinc solutions were prepared from zinc acetate powder (Sigma-Aldrich
383317).

Lyophilization and rehydration of cell-free biosensing reactions

CFE reactions for lyophilization were set up as described above and lyophilization was
performed as reported in literature®. Briefly, 35-uL or 15-uL reactions were aliquoted into 0.2 mL
PCR tubes (Thermo Scientific AB-2000) with a hole punctured in the cap by an 18-guage
needle. Samples were flash-frozen in liquid nitrogen and quickly transferred to the manifold
adapter on a VirTis AdVantage Pro Freeze Dryer. Lyophilization was performed at 100 mTorr
with the condenser set to —80 °C. After lyophilization for 16 — 20 hours, samples were

rehydrated with water and pipette-mixed.

Municipal water collection and analysis

For this work, the 15t and 5™ liter municipal water samples were collected in 1 L wide-mouth
HDPE bottles from households in Evanston and Chicago, IL. Non-acidified samples were used
to test PbrR biosensing systems. Within two weeks of sample collection, 15 mL aliquots of each
water sample were acidified to pH<2 using ultra-pure HNO3 (Ultrex, J.T. Baker, 67-70%).
Samples were then analyzed via ICP-MS within 16 hours after acidification, per EPA Method
200.8%. ICP-MS data were generated using a ThermoFisher iCAP-Q in kinetic energy

discrimination mode with helium as the collision gas. The instrument was equipped with



a CETAC ASX260 autosampler, calibrated with ten standard solutions and an acid blank.
Standard solutions were made from two separate multielement stock solutions in 2% HNOS3: (i)
major municipal water cations with concentrations from 0 to 10 mg/L like calcium and
magnesium and (ii) trace elements with concentrations from 0 to 10 pg/L, like lead. The average
limit of detection (LOD) for 2°¢-298pp was 0.59 ng/L. Samples with lead concentrations initially
measured above the calibration range were re-measured after dilution by the autosampler. The

certification of the results were based on analyzing the standard reference material Aqua-1°’.

Data collection and analysis

Data in this manuscript represent n = 3 biological replicates unless otherwise noted in the text or
figure legends. All data were collected using stated instruments and associated commercially
available software. Commercial software used includes: Gen5 Version 2.09.2 (BioTek Synergy
Neo2 or H1) for measuring GFP fluorescence or absorbance and Qtegra ISDS (ThermoFisher
iCAP-Q ) for measuring municipal water content. Data analysis and figure generation were
conducted using Excel Version 16.19.1, ChimeraX Version 1.9%, Prism Version 10.4.2, Jupiter
Notebook Version 7.2.2, and Chai-1%.

Statistics and reproducibility
No statistical method was used to predetermine sample size. No data were excluded from the
analyses. The experiments were not randomized. The Investigators were not blinded to

allocation during experiments and outcome assessment.

Data Availability

DNA sequences for the PbrR mutants used in this study are included in the Supplementary Data
1 file. The Uniprot accession code for wildtype PbrR is Q58AJ5
[https://www.uniprot.org/uniprotkb/Q58AJ5/entry]. The Addgene accession code for the wildtype
PbrR plasmid is 167215 [https://www.addgene.org/167215/]. The Addgene accession codes for
the sfGFP and catechol reporter plasmids are 167222 [https://www.addgene.org/167222/] and
167254 [https://www.addgene.org/167254/], respectively. Source data are provided with this

paper.

Code Availability

The code used in this manuscript is available at:



Main codel®: https://github.com/ShuklaGroup/multiobjective controlled extrapolation

Data used in code demo: https://uofi.box.com/s/gpaatf9ge9f3ofgq7aybqwkxkid94fgd
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Figure Legends/Captions (for main text figures)

Figure 1 | An ML-guided, cell-free expression workflow for transcription factor-based
biosensor development. Schematic shows the Design-Build-Test-Learn workflow applied to rapidly
tune the sensitivity and selectivity of aTFs, with PbrR as a model. The ML model is trained on paired
mutant data comprised of sequence comparisons with directional objective labels to predict new
mutant sequences (Design). Acoustic liquid handling robotics are used to set up CFE reactions for
testing mutant libraries (Build). The libraries are screened for desirable lead biosensor
characteristics (Test). Sequence-function data is used to create and compare pairs of mutants to
identify amino acid residues with high probability of being functionally important (Learn).

Figure 2 | A PbrR-based biosensor for lead detection in cell-free expression systems. (A)
Wildtype PbrR does not have the sensitivity to lead at the EPA action level (0.048 uM lead or 10
ppb)’" and has high sensitivity towards levels of zinc below the EPA maximum limit (76 uM or 5
ppm)’3. Data represent three biological replicates at each ligand concentration (n = 3). (B) We
previously engineered PbrR mutants® to have sensitivity to lead at the EPA action level; however,
these mutants have a strong response to zinc and give false positive results as a diagnostic for lead
contamination in tap water. Data are presented as mean values +/- SD of three biological replicates
(n = 3). Source data are provided as a Source Data file.

Figure 3 | Rapid generation of a sequence-function landscape dataset for ML-guided directed
evolution of PbrR. (A) Schematic of the cell-free workflow. Mutant libraries were rationally designed
in a previous study® and are screened against low lead concentration (1 uM), high zinc
concentration (30 uM), and no ligand condition using a high throughput, plate-based assay. Mutant
activity is measured as fluorescence and assessed by its fold change normalized to wildtype fold
change (n = 2). The mean normalized fold change (norm FC) towards lead and zinc was calculated
at every residue tested in the (B) alanine scanning mutagenesis library and (C) site saturation
mutagenesis library. (D) Residue positions with multiple mutations towards lead selectivity over zinc
are identified. (E) Scatterplot of individual mutant activity towards lead and zinc represented as the
mean normalized FC of two biological replicates (n = 2). Source data are provided as a Source Data
file.

Figure 4 | ML-guided directed evolution of PbrR towards lead selectivity over zinc. (A) For the
learn step of our DBTL cycle, mutant data is paired, and each pair is labeled with an observed
direction of functional change towards lead and zinc. A sequence-to-sequence large language model
is trained on paired data to predict mutants. We performed five rounds of engineering with three ML-
guided rounds (B, C, E) and two rational rounds using combinatorial mutagenesis strategies (D, F).
Over the rounds, we observe a large shift in mutants with increased normalized FC to lead and
decreased normalized FC to zinc, indicating lead selectivity over zinc. As the model is trained on
more data, it focuses on selected residue positions in its predictions. Mutant data in the screening
assay were collected in biological triplicate (n = 3) and the mean normalized FC for each mutant is
used in the scatterplots. Source data are provided as a Source Data file.



Figure 5 | Mutations at six residues that accumulated in five rounds of PbrR engineering are
important for lead selectivity over zinc. (A) Table highlights the mutations found in the top mutants
of each round. Mutations found in the final best mutants are highlighted in pink while mutations only
found in earlier rounds are highlighted in gray. The fluorescence and (B) fold change at 0.05 uM Pb
and 30 uM Zn were measured in screen validation experiments. Data was collected in biological
triplicate (n = 3). Mean fluorescence +/- SD is represented in (A). Mean fold change is plotted in (B)
with error bars representing SD. Source data are provided as a Source Data file.

Figure 6 | Freeze-dried cell-free biosensor based on mutant PbrR detects lead without zinc
activation. (A) Schematic of PbrR-based biosensor as a point-of-use diagnostic. Cell-free
biosensing reaction supplemented with an extract enriched with PbrR is Iyophilized. Lyophilized
reactions are rehydrated with water samples. (B) Residues on PbrR structure are highlighted to
demonstrate the distribution of mutations across the protein for the best mutant
D64K_N83I_I90A_K104T_H106A_P143R. (C) Dose response curves for the best performing
biosensor mutant show high selectivity for lead over zinc at relevant lead concentrations. Hill slope
for lead dose-response is 0.94. (D) Lyophilization does not negatively impact biosensor function.
Data are presented as mean values +/- SD of three biological replicates (n = 3). (E) Schematic of
PbrR-based biosensor using the enzymatic, colorimetric catechol reporter. (F) PbrR-based biosensor
using catechol reporter functions after lyophilization and rehydration. A visible difference is seen in
ligand conditions at t = 4 hrs. (G) Lyophilized biosensor reactions with the catechol reporter are
rehydrated with municipal water samples containing a range of lead concentrations. All data shown
were collected in biological triplicate (n = 3). Supplementary Figure 5 and Supplementary Figure 6
detail how the ‘visible by eye’ line is determined. The time point at 7 hours was selected to
discriminate between samples with lead and the no-lead control. Source data are provided as a
Source Data file.

Editorial Summary

Allosteric transcription factors (aTFs) are promising tools for environmental and human health
monitoring. Here the authors develop a multi-objective, machine learning-guided method to
engineer an aTF-based portable diagnostic for environment sensing of lead in drinking water at
the legal limit.

Peer review information: Nature Communications thanks Haoran Yu, and the other,
anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review
file is available.
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