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Abstract 

Point-of-use diagnostics based on allosteric transcription factors (aTFs) are promising tools for 

environmental monitoring and human health. However, biosensors relying on natural aTFs 

rarely exhibit the sensitivity and selectivity needed for real-world applications, and traditional 

directed evolution struggles to optimize multiple biosensor properties at once. To overcome 

these challenges, we develop a multi-objective, machine learning (ML)-guided cell-free gene 

expression workflow for engineering aTF-based biosensors. Our approach rapidly generates 

high-quality sequence-to-function data, which we transform into an augmented paired dataset to 

train an ML model using directional labels that capture how aTF mutations alter performance. 

We apply our workflow to engineer the aTF PbrR as a point-of-use diagnostic for lead 

contamination in water. We tune the sensitivity of PbrR to sense at the U.S. Environmental 

Protection Agency (EPA) action level for lead and modify the selectivity away from zinc, a 

common metal found in water supplies. Finally, we show that the engineered PbrR functions in 

freeze-dried cell-free reactions, enabling a diagnostic capable of detecting lead in drinking water 

down to ~5.7 ppb. Our ML-driven, multi-objective framework—powered by directional tokens—

can generalize to other biosensors and proteins, accelerating the development of synthetic 

biology tools for biotechnology applications. 
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Introduction 

Bacteria constantly sense their environment to regulate gene expression and mitigate toxins. 

Many of these sense-and-respond systems rely on allosteric transcription factors (aTFs), which 

bind to specific DNA operator sequences and undergo conformational changes only when a 

cognate small-molecule inducer is present. This mechanism activates or represses downstream 

gene expression and has inspired the design of gene circuits using an aTF and its operator as 

biosensors for specific ligands1. Such biosensors have shown great promise as synthetic 

biology tools2-5 and molecular diagnostics for environmental (e.g., pesticides6, heavy metals7, 

and contaminants8,9) and human health (e.g., disease markers10, hormones11) monitoring12-25.  

 

Unfortunately, natural aTFs usually do not meet the performance requirements for real-world 

applications without engineering2. Properties such as sensitivity, selectivity, dynamic range, and 

response time often need improvement. High-throughput screening and directed evolution can 

address these limitations, but engineering aTFs remains difficult due to their allosteric nature26,27  

and the challenge of simultaneously tuning multiple parameters (e.g., sensitivity and 

selectivity)28-30. A key bottleneck is the ability to quickly map sequence–function relationships 

across multiple ligands, capturing both successes and failures, to inform forward engineering. 

 

Machine learning (ML)-guided directed evolution has transformed the way we navigate vast 

protein sequence-function landscapes, making exploration faster and less reliant on exhaustive 

experiments31-39. At its core, ML supports protein engineering in two complementary ways: 

predictive models, which score given sequences or structures, and generative models, which 

propose new ones. 

 

Predictive models act as evaluators to screen predefined libraries and prioritize candidates for 

experimental validation. Examples include zero-shot predictors, which infer fitness directly from 

evolutionary or structural context using pretrained protein large language models (pLLMs)40-46, 

and supervised models trained on sequence-function datasets to guide optimization for specific 

tasks such as catalysis43,47-50. Classification-based models, like DeepTFactor51 (which identifies 

transcription factors) and ESM-DBP52 (which predicts DNA-binding proteins), represent another 

subset. These models excel at discovery and annotation tasks but mainly identify candidate 

scaffolds rather than optimize functional properties. Traditional ML-directed evolution (MLDE) 

approaches can be used to combine predictive models with manually designed libraries31,32,34-
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37,53, making results sensitive to predictor accuracy, prior assumptions, and biases in the training 

data. 

 

Generative models, by contrast, create novel sequences or structures tailored to specific 

objectives. Examples include structure-generating models such as RFdiffusion54,55, which create 

protein backbones that scaffold functional motifs, and mutation proposing models such as 

FuncLib56, which suggest active-site substitutions without manual library construction. However, 

such models have limitations: they often depend on high-quality structural information and 

abundant sequence homologs, and may fail for dynamic or allosterically regulated proteins. 

More recent approaches, such as preference-based learning (e.g., ProteinDPO57), incorporate 

relative comparisons between variants, but their scope is narrow—focusing on single objectives 

and lacking adaptability for tasks where tradeoffs between properties must be considered. This 

is especially relevant for biosensors where increasing sensitivity often reduces selectivity. 

 

To overcome existing limitations, we set out to develop a directional, multi-objective ML model 

for engineering aTF-based biosensors that relies on a controlled extrapolation framework 

(Figure 1)58. This model uses a sequence-to-sequence architecture to learn how amino acid 

sequence changes influence protein function, guided by tokens that encode the direction of 

property change. This approach eliminates the need for downstream predictors and allows 

direct manipulation of the model’s latent space. Unlike preference-based models that only 

highlight improvements, our directional token approach exposes the model to both beneficial 

and detrimental mutations within the same training framework. For example, when the model 

sees a sequence pair labeled with 'decrease/increase' tokens, it simultaneously learns which 

mutations harm the first property while benefiting the second. This bidirectional learning 

provides a rich training signal about the mutational landscape59.  

 

We implement an active learning framework combining this directional ML model with a cell-free 

expression (CFE) system. The CFE system uses crude cellular extracts and reaction 

components (e.g., energy substrates, amino acids) to enable high-throughput transcription and 

translation of DNA templates outside living cells60-62. Building on our previous work63,64, we 

integrate ML-guided design to achieve multi-objective optimization of the lead-responsive aTF 

PbrR, originally from the megaplasmid pMOL30 of Cupriavidus metallidurans65. Lead was 

selected because of its severe public health impact66-68. In the United States alone, there are an 

estimated 9.2 million lead service lines still in use69. Using the open, scalable CFE system, we 
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rapidly generate positive and negative sequence-function data across multiple ligand conditions 

to train the model and iteratively refine predictions. This integrated, data-driven workflow 

enabled engineering of PbrR variants balances sensitivity and selectivity, meeting performance 

requirements for lead detection in drinking water. 

 

Results 

PbrR as a model allosteric transcription factor for biosensor design  

PbrR is a transcriptional activator that can function in a cell-free biosensing system to detect 

lead64. Upon ligand binding, PbrR undergoes a conformational change to distort the cognate 

operator site it is bound to, which initiates transcription of a downstream gene70, such as the 

superfolder green fluorescent protein (sfGFP) reporter gene. However, wildtype PbrR does not 

have the sensitivity and selectivity requirements for diagnostic applications. The U.S. 

Environmental Protection Agency (EPA) action level starting in 2027 for lead is 0.048 M lead 

(10 ppb)71 but the wildtype PbrR-based biosensor does not induce sfGFP expression in cell-free 

systems until ~1 M lead (Figure 2A). Wildtype PbrR also reacts with other divalent ions, such 

as zinc72. Zinc is commonly found in tap water due to dissolution from pipes, and zinc 

bconcentrations below its EPA maximum limit (76 M or 5 ppm)73 strongly activate PbrR-based 

biosensor (Figure 2A). The cross reactivity of PbrR towards lead and zinc has been studied. An 

in vivo directed evolution study improved lead selectivity of PbrR but did not address lead 

sensitivity. Additionally, our previous engineering campaign improved lead sensitivity of PbrR to 

the EPA action level64, but the best mutants also activate in the presence of zinc (Figure 2B), 

limiting their utility for diagnostic applications due to false positives. 

 

Generating an initial dataset for ML model training  

Towards diagnostic application requirements, we sought to simultaneously tune two biosensor 

characteristics using an ML-guided, design-build-test-learn (DBTL) workflow. This required an 

initial sequence-function dataset on biosensor activity towards lead and zinc to train the model 

(Figure 3A).  

 

To generate this data, we screened 1,155 mutants that we previously created when engineering 

PbrR only for increased lead sensitivity64. These mutants included an alanine scanning 

mutagenesis (145 mutants), site saturation mutagenesis (931 mutants), and selected 

combinational mutagenesis (79 mutants). Using liquid handling robotics to perform a plate-
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based high-throughput screen, we carried out 3,465 unique reactions at 1 L scale to test each 

mutant at a low concentration of lead (1 M), high concentration of zinc (30 M), and no ligand 

condition. The impact of each mutation from the alanine scanning mutagenesis (Figure 3B) and 

site saturation mutagenesis (Figure 3C) libraries on biosensor sensitivity relative to wildtype 

towards 1 M lead and 30 M zinc is represented in the heatmaps as normalized fold change 

(FC)64. For a mutation that was in a combinatorial mutant, the mean normalized FC of all 

mutants containing that mutation is represented. The mutability of PbrR for ligand sensitivity is 

not limited to the ligand binding domain, which highlights the difficulty of rational engineering of 

allosteric proteins. For example, mutations at residues in the DNA binding domain (e.g., M60, 

P61 and D64) and in the helix-turn-helix domain (e.g., K104 and L107) had diverse effects on 

activity.  

 

A large shift in biosensor activity was not expected. Instead, mutations that result in small 

increases in lead sensitivity (lead normalized FC > 1) and small decreases in zinc sensitivity 

(zinc normalized FC < 1) would be important over iterative engineering rounds towards the goal 

of lead selectivity over zinc (Figure 3D). An ideal mutant has a high normalized FC to lead and a 

normalized FC to zinc of zero. Because wildtype PbrR displays no activity towards 1 M lead, a 

normalized FC to lead greater than one indicates increased sensitivity. In contrast, wildtype 

PbrR has strong activity towards zinc so the normalized FC to zinc must be close to zero to 

indicate no zinc sensitivity. In this initial set, mutants generally displayed the same change in 

activity towards lead and zinc, either sensitivity towards both ligands increased or decreased 

(Figure 3E).  

 

Creating a paired dataset for the ML model  

Our ML-model is trained on pairs of mutants, with each pair labeled according to the observed 

direction of functional change, rather than individual sequences that are used in traditional ML-

methods. This is a departure from previous approaches and builds on the Iterative Controlled 

Extrapolation framework58. Pairing data also eliminates the need for numerical predictors, which 

can be unreliable when data is scarce. By training the model on sequence comparisons with 

directional labels, it learns generalizable patterns. We track how each functional label changes 

from one mutant to another, generating directional categories for each pair of mutants. For 

example, with two objectives, we consider four directional categories (e.g., increase/increase, 

increase/decrease, decrease/increase, and decrease/decrease), each assigned a unique token 

(Figure 4A). As the number of objectives increases, the number of possible categories grows, 
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but the model’s task remains the same, which is to learn the sequence edits associated with 

each directional shift. This approach reduces the model’s tendency to memorize specific 

sequences, improving its ability to extrapolate and suggest mutations in unsampled regions of 

the mutational landscape. 

 

Active learning-guided optimization of a cell-free biosensor based on PbrR 

With an ML model framework designed and trained on an initial dataset (Round 0), the first 

round of PbrR engineering towards increased lead sensitivity and decreased zinc selectivity 

consisted of 382 computationally predicted mutants ranging from 1st- to 6th-order mutants (i.e., 

amino acid changes). This number was chosen to match the capacity of the 384-well plate that 

is used in our assay, while leaving wells open for controls. We screened these mutants against 

a low concentration of lead and high concentration of zinc to identify mutants with lead 

selectivity over zinc. Like Round 0, we observed that most mutants displayed either complete 

loss of function or increased lead and zinc sensitivity (Figure 4B). However, there were two 

mutants (D64K_N83F and N83I_K104V) that showed a higher fluorescent response to lead than 

zinc (Supplementary Figure 1). We validated these mutants in experiments set up by hand to 

confirm the lead selectivity over zinc (Supplementary Figure 2). The altered residues of these 

mutants aligned with the ones we previously identified in Round 0 as being important for lead 

selectivity over zinc, which motivated us to analyze the residue exploration of the model. We 

calculated “Frequency in mutants” as the number of mutants that included a mutation at the 

specified amino acid residue. In Round 1, the model targeted 62 residues with a bias towards 11 

residues that were each in at least 10% of mutants. Additionally, we observed that mutating 

residues N83 and P143 more often resulted in increasing lead sensitivity and decreasing zinc 

sensitivity.  

 

The two mutants from Round 1 that displayed lead selectivity over zinc had low fluorescent 

output, which is a limitation for use in a diagnostic. To address this, we began to train the model 

on normalized dynamic range (DR) in addition to normalized FC in Round 2. DR is the 

concentration of sfGFP synthesized in the absence of ligand (leak) subtracted from the 

concentration of sfGFP synthesized in the presence of ligand. We normalized the DR of each 

mutant to wildtype to more clearly observe relative activities and normalize for noise associated 

with assays run on different days. Negative normalized DR values were set to zero for model 

training. FC is a better sensitivity measure of mutants while DR better reflects the signal 

response of mutants.  
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In Round 2, we screened 200 computationally predicted higher-order mutants, with 100 mutants 

predicted from the model trained on normalized DR data at lead and zinc and the other 100 

mutants predicted from the model trained on normalized DR data at zinc and normalized FC 

data at lead. As the model became better informed by data from earlier rounds, fewer mutants 

were needed to explore the sequence space effectively. Testing 100 mutants per metric allowed 

us to compare the performance of each training strategy while reducing DNA synthesis costs.  

 

Overall, we observed a modest increase in the number of mutants with a higher normalized FC 

to lead relative to zinc (Figure 4C). However, most mutants still showed a stronger signal 

response to zinc than lead (Supplementary Figure 1). Mutants predicted from the model trained 

on lead normalized FC and zinc normalized DR generally had higher leak. Despite this, the ML 

model began proposing hits with higher order mutations that were not obvious or additive. For 

example, the model predicted the mutant N83I_K104V_H106A_P143R, which included the 

H106A mutation, a substitution not previously shown to increase lead sensitivity on its own. This 

mutant displayed higher signal to lead than zinc and was validated in a by-hand experiment 

(Supplementary Figure 2). Additionally, we observed a decrease in the number of residues (48 

residues, 33% of protein) explored and mutated in this round of computational predictions. The 

bias towards key residues, such as N83, highlights the importance in tuning activity towards 

increased sensitivity for lead and decreased sensitivity to zinc simultaneously.  

 

We noted that the three “winners” from Round 1 and 2 contained overlap mutations at N83 and 

K104 and decided to perform a round of rational engineering, Round 2b, by creating ten higher 

order (4th- and 5th-order) mutants from the six unique mutations at five residue positions from 

previous winners, consisting of K64D, N83I or N83F, K104V,  H106A, and P143R  (Figure 4D). 

These designs were informed directly by prior ML-guided rounds and experimental validation, 

reflecting a strategic recombination of high performing substitutions. While these rational 

variants were not proposed de novo by the model, they drew directly from the higher order 

combinations that the model has already prioritized, which is a targeted exploitation of model 

discovered signals. Targeted exploitation of high performing mutants through combination has 

been observed to improve sensor activity by combining multiple mutations in our previous PbrR 

engineering efforts64. All mutants displayed significantly higher normalized FC to lead than to 

zinc. Importantly, the validation of these mutants showed that mutants 

D64K_N83I_K104V_H106A and D64K_N83I_K104V_H106A_P143R exhibited lead selectivity 
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over zinc at a lead concentration (0.05 M) near the EPA action level of lead (0.048 M) 

(Supplementary Figure 2).  

 

We next trained the ML model on Round 2b data and observed a significant improvement in the 

computational predictions because the training data now contained several mutants with better 

lead sensitivity than zinc sensitivity. For Round 3, the ML model was trained on two datasets: (i) 

normalized FC at lead and zinc, and (ii) normalized DR at lead and zinc. Overlap mutants that 

were predicted from both training datasets were tested. Of the 108 mutants screened, 75 

mutants had a normalized FC to lead greater than one and to zinc less than one (Figure 4E) 

and 34 mutants had higher fluorescent signal to 1 M lead than to 30 M zinc (Supplementary 

Figure 1). We were again able to screen a reduced library size of 108 mutants because the 

large dataset from previous rounds increased the reliability of model predictions. The ML model 

limited its exploration to 32 residues and strongly biased mutations at residues seen in Round 

2b. The success of Round 2b motivated another rational round of combinatorial mutagenesis 

with the top 4 mutants from validating Round 3 hits (Supplementary Figure 2). We designed a 

library of 169 higher-order mutants (4th-, 5th-, and 6th-order) at 6 residues with 10 unique 

mutations (Figure 4F). In Round 3b, all mutants had a higher normalized FC to lead than to zinc 

and 137 mutants have lead selectivity over zinc (Supplementary Figure 1).  

 

As our evolutionary scan traversed the fitness landscape, the diversity of mutated residues 

positions decreased. The top mutants from each round only covered 10 residues and 16 

mutations in total (Figure 5A) and the incremental additional of key mutations through the 

rounds increased mutant lead sensitivity at relevant lead concentrations while maintaining low 

zinc sensitivity (Figure 5B). Although mutations L107C and G128I increase lead sensitivity, they 

also cause high leak and were disfavored in later rounds. Mutations D64K, K104V, and N83I 

were identified early in Rounds 0 and 1 as important for the desired biosensor characteristics. 

Then, mutations H106A and P143R shifted PbrR towards lead selectivity over zinc at a lead 

concentration 60-fold lower than the zinc concentration. Finally, the addition of mutation I90A in 

Round 5 eliminated zinc sensitivity. Single mutants H106A, P143R, and I90A did not show 

beneficial behavior, which highlights that ML model’s ability to capture unusual combinations. 

Some of the mutations are also biophysically unexpected (e.g., D64K, P143R), further 

highlighting the power of the model.  

 

ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS



 

 

The top mutants of Round 3b exhibited high sensitivity to lead at the EPA action level without 

activation by zinc, indicating low likelihood of false positive results to due zinc crosstalk. 

Importantly, the ML model and rational design served complementary roles throughout the 

engineering process. Rational design efficiently built on validated mutations by combining 

previously successful substitutions into higher order mutants, while the model proposed 

unexpected non-additive combinations where some individual mutations alone offered little 

benefit. When rationally designed mutants were incorporated into subsequent ML training, they 

strengthened the model’s confidence in key regions of the sequence space and improved its 

ability to prioritize synergistic mutations. This exchange between computationally proposed and 

experimentally guided recombination enabled more focused searches and was effective in 

realizing the final design. 

 

Freeze-dried, cell-free PbrR biosensors as a diagnostic assay for lead in drinking water 

Cell-free biosensors are promising point-of-use diagnostics for water contamination because 

they can be lyophilized for stable storage and transportation and then rehydrated with the water 

sample9,74. We next tested if our PbrR-based biosensor could be freeze-dried and remain 

functional to detect lead in water samples (Figure 6A). Instead of aTF expression from a DNA 

template during a CFE reaction, we created extracts enriched for the aTF (i.e., the aTF was 

expressed in the extract source strain prior to cell lysis) to improve biosensor performance (e.g., 

increased sensitivity and dynamic range)8,64. We made enriched extracts with the top three 

mutants from Round 3b (Supplementary Figure 3), and mutant 

D64K_N83I_I90A_K104T_H106A_P143R (Figure 6B) exhibited the best biosensor performance 

with low leak and the highest signal response to 0.05 M lead (Figure 6C).  

 

To evaluate the potential of this mutant as a diagnostic, we next demonstrated that lyophilization 

has no negative impact on sensor function (Figure 6D), and that the mutant only exhibits cross-

reactivity to mercury when tested against a panel of divalent metal ions that may be found in 

municipal water (Supplementary Figure 4). Then, based on previous work for developing point-

of-use water quality diagnostics75, we modified the reporter system of the biosensor to express 

the enzyme catechol 2,3-dioxygenase (C23DO), which cleaves colorless catechol into the 

yellow pigment 2-hydroxymuconate semialdehyde (Figure 6E). Using an enzymatic, colorimetric 

reporter improves the kinetics of the reaction64 and provides a visible difference between ligand 

conditions (Figure 6F). We rehydrated lyophilized sensor reactions with municipal water 

samples that were collected in Evanston and Chicago, Illinois. Metal concentrations in these 
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samples were quantified using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). We 

observed both quantitative and qualitative differences in sensor responses between the lead-

free water sample and those containing lead (0.03 – 0.13 M; 5.71 – 26.41 ppb), indicating that 

this PbrR-based biosensor could be used as an effective point-of-use diagnostic for detecting 

lead at the legal limit in real-world water samples (Figure 6G).  

 

Discussion 

In this work, we established a directional, multi-objective ML-guided cell-free platform for tuning 

multiple transcription factor biosensor characteristics simultaneously. The ML model uniquely 

adapted a controlled extrapolation framework for multi-parameter optimization and trained a 

sequence-to-sequence language model on paired mutant data. Using a high-throughput CFE 

screening assay, we showcased the ability to rapidly screen libraries to engineer lead-

responsive transcription factor PbrR to have lead selectivity over zinc at lead concentrations at 

the EPA action level. Being able to discriminate between two similar divalent cations, Pb2+ and 

Zn2+, is an important example of using ML-guided methods for protein design. 

 

A key feature of our work is the high efficiency of the ML model to optimize over multiple 

objectives, as it enabled us to screen less than 1% of the search space to identify mutants with 

the desired selectivity and high sensitivity to lead. Our ML framework is especially suitable for 

design problems where optimizing one function may negatively affect another, requiring explicit 

definition of multiple objectives. It is also advantageous in data-scarce situations, as the use of 

paired data synthetically expands the training set. Additionally, by eliminating the need to tune or 

retrain separate predictors for each new objective, our method provides flexible multi-objective 

optimization within a single model. By incorporating directional tokens, the model can be flexibly 

prompted to pursue any design objective over any scale, generating any desired number of 

candidates tailored to experimental capacity. This enables efficient exploration of vast 

mutational landscapes without manual intervention. 

 

Through efforts to train our ML model and then subsequent screening rounds, we assayed 

2,024 mutants that explored all residues positions to gain an understanding of the positive and 

negative sequence-function landscape of PbrR. By thoroughly optimizing the high-throughput 

workflow63, we generated high quality data to train a model to recognize patterns that would be 

difficult to do without computational tools. For example, mutations at residue I90 provided little 

to no shift in activity towards lead selectivity over zinc in Round 1 and 2. In workflows that rely 
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only on rational methods, such as combinatorial mutagenesis, this residue would likely not have 

been explored in later rounds but proved essential for our goal in Round 5. 

 

At the end of the engineering campaign, we identified 6 unique residues positions that need to 

be mutated together to shift the selectivity of PbrR towards lead and away from zinc. These 

residues span all domains of PbrR: D64 is in the DNA binding domain (DBD), N83, I90, K104, 

and H106 are in the helix-turn-helix domain (HTH), and P143 is in the ligand binding domain 

(LBD). The distribution of the mutations highlights the limitations of using rational engineering 

approaches for allosteric proteins as it is difficult rationalize why this specific combination of 

mutations would be important for tuning ligand selectivity. We hypothesize that these mutations 

are impacting metal ion coordination, DNA affinity, homodimerization, and allostery. For 

example, Pb2+ typically has more flexible coordinate geometries with proteins compared to Zn2+, 

which prefers tetrahedral coordination76,77. The mutations we identified may subtly reshape the 

binding pocket’s geometry or electrostatics to disfavor zinc coordination and improve lead 

coordination, as well as increase cross reactivity to mercury (Supplementary Figure 4). 

Additionally, mutations in the HTH motif may influence the allosteric communication between the 

LBD and DBD domains, altering the transcriptional response of the biosensor to different 

metals78. More broadly, rapidly building datasets to navigate vast protein sequence space 

remains difficult. We expect that our dataset will help support general advances in ML-model 

development for synthetic biology. 

 

We anticipate that our approach to tune biosensor characteristics can be applied to any 

transcription factor but may require modifications to the experimental set-up and ML model 

parameters. For example, when working with a repressor transcription factor, an additional 

incubation step when setting up a CFE biosensing reaction may be required to allow for the 

transcription factor to bind to its operator site to reduce high leak. Depending on the mutability of 

a transcription factor and the degree of targeted change in biosensor activity, various ML 

parameters will need to be explored. A recent study showed that thermodynamic and kinetic 

models were able to provide mechanistic reasoning for allosteric modulation of ligand selectivity 

in transcription factor MAX. Binding mechanisms were revealed in kinetic measurements79. 

Incorporating these types of models and data collection into our workflow could be beneficial in 

engineering transcription factor biosensors.  
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In terms of applications, just as freeze-dried CFE systems can be used for manufacturing80-82 

and education83-86, our engineered PbrR-based biosensor holds promise for point-of-use 

diagnostics. For example, the system can be freeze-dried for easy storage, distribution, and 

activation by just adding water. In addition, the system is low-cost (i.e., ~10 cents per 15-L 

reaction80). Furthermore, we showed a 500-fold improvement in sensitivity from a previous 

report9, while avoiding Zn selectivity problems that have plagued past efforts with false 

positives64. Finally, we demonstrated that the biosensor works in real-world municipal water 

samples to detect lead. Future improvements will seek to accelerate time to response to 

minutes instead of hours, as has been accomplished with the ROSALIND system9. 

 

In sum, our ML-guided, cell-free workflow improved the process of exploring sequence-function 

search space to tune transcription factor-based biosensor characteristics by overcoming 

traditional directed evolution challenges with allosteric proteins and limitations of predictive 

scoring ML models. Looking forward, we anticipate that our active learning approach will 

accelerate the development of specialized diagnostics, and perhaps any engineered protein, for 

numerous synthetic biology applications. 

 

Methods 

Multi-Objective Controlled Extrapolation 

We extended the Iterative Controlled Extrapolation (ICE) framework58 to enable multi-objective 

protein design without relying on numerical downstream predictors. ICE is a transformer based 

language model that performs single objective, iterative rounds of sequence refinement. In each 

round, the model predicts small edits to a sequence to gradually achieve attribute values 

beyond the training distribution. Our approach leverages a sequence-to-sequence transformer 

trained directly on paired mutant comparisons, where each pair is labeled with a discrete token 

indicating the direction of functional change across one or more objectives. Unlike traditional 

iterative design strategies that involve multiple or iterative rounds of generation, our approach 

uses only a single generation step. This generation is seeded from a diverse set of 

experimentally validated sequences that meet specific starting criteria (e.g., high lead response 

and low zinc response). By avoiding multiple rounds, we reduce the risk of the model drifting 

away from experimentally reliable regions of sequence space. This encourages novelty through 

diversity in the initial seeds and enables controlled extrapolation to new designs while 

maintaining proximity to known data.  A pseudocode representation of the model training and 

sequence generation procedures is provided in the Supplementary Information as 
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Supplementary Note 1 and Supplementary Note 2, respectively. The model architecture, along 

with the training and generation workflows, is illustrated in Supplementary Figure 7. These 

algorithms are described in detail in the following sections. 

 

Training Data Construction 

Let 𝑋 ∈  𝐴𝐿 denote a protein sequence of length L, where A is the set of all amino acid single 

letter codes. Let f be the unknown multi-objective function that maps each sequence to a vector 

of j scalar measurements, where j is the number of objectives. In our case, we define: 

(1) 𝑓(𝑋) = [𝑓𝑍𝑛(𝑋) , 𝑓𝑃𝑏(𝑋)], 

where 𝑓𝑍𝑛(𝑋) and 𝑓𝑃𝑏(𝑋) denote the measured fold change or response to zinc and lead, 

respectively.  Note that the model is trained without access to these numerical values. They are 

used only to assign directional labels. We define the training data as a set of N sequence pairs 

{(𝑋1
(𝑖)

, 𝑋2
(𝑖)

)}
𝑖=1

𝑁
, where each pair represents edits in sequence or mutations from 𝑋1 to 𝑋2, which 

may involve one or more amino acid substitutions. From a set of M experimental samples, up to 

(𝑀
2

) unique pairs can be formed, enabling substantial data augmentation, especially when M is 

small. To ensure biological relevance and robust training, we include only those sequence pairs 

where the measured change in objective exceeds the estimated experimental noise threshold 

𝜏𝜅. For each pair (𝑋1, 𝑋2)  and each objective 𝜅, we assign a direction label:   

(2) 𝑙𝑎𝑏𝑒𝑙𝜅 = { 
〈𝑖𝑛𝑐〉, 𝑓𝜅(𝑋2 − 𝑋1) >  𝜏𝜅

〈𝑑𝑒𝑐〉, 𝑓𝜅(𝑋2 − 𝑋1)  ≤  𝜏𝜅
  

Each label vector 𝑑(𝑖) ∈  {〈𝑖𝑛𝑐〉 , 〈𝑑𝑒𝑐〉} 𝑗 is prepended to the input sequence as a set of tokens. 

We ensure approximate balance across all 2𝑗 possible combinations of directional labels to 

avoid training bias.  

  

Model Architecture and Training 

We use a transformer encoder-decoder model based on the T5 architecture, specifically the 

ProtT5-XL-UniRef50 model from Rostlab87.  We added two special tokens,  〈𝑖𝑛𝑐〉 and 〈𝑑𝑒𝑐〉, to 

represent directionality for each objective.  

 

During training, the model receives an input prompt consisting of the directional tokens followed 

by the amino acid sequence 𝑋1 , and it is trained to autoregressively generate the output 

sequence 𝑋2. The conditional probability of generating 𝑋2 given the input is modeled as:  

(3) 𝑃𝜃(𝑋2|𝑑, 𝑋1) =  ∏ 𝑃𝜃(𝑋2,𝑡|𝑑, 𝑋1, 𝑋2,<𝑡)𝐿
𝑡=1 , 
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where 𝑋2,𝑡 is the amino acid at position t in the target sequence 𝑋2 , 𝑋2,<𝑡 is the partial sequence 

of 𝑋2 up to but not including position t, 𝜃 is the model parameters learned during training, and L 

is the length of the target sequence. The model is trained to maximize the conditional log-

likelihood of the target sequences across the dataset of N labeled sequence pairs: 

(4) 𝐿(𝜃) =  ∑ log 𝑃𝜃 (𝑋2
(𝑖)

|𝑑(𝑖), 𝑋1
(𝑖)

)𝑁
𝑖=1 , 

where 𝑋1
(𝑖)

, 𝑋2
(𝑖)

, 𝑑(𝑖) are the source sequence, target sequence, and directional label for the i-th 

training example, respectively. Loss is computed via token-level cross-entropy, and the model is 

optimized using AdamW with a learning rate of 1e-4 and weight decay of 1e-4, using Hugging 

Face’s Seq2SeqTrainer. During training, to assess whether the model is generating valid 

sequences consistent with the training distribution, we use the SacreBLEU score88.  

 

To minimize memory usage, we apply the Low-Rank Adaptation (LoRA) framework for 

parameter efficient finetuning89. Low-Rank Adaptation (LoRA) is used to efficiently finetune large 

pretrained language models without updating all weights. By injecting trainable low-rank 

matrices into frozen transformer layers, LoRA drastically reduces the number of parameters that 

need to be learned, saving memory and computation while allowing the model to adapt to new 

tasks or datasets. We set the rank of the update matrices to 16, applied a LoRA scaling factor of 

32, and used a dropout probability of 0.05 in the LoRA layers. More details on model training 

and parameters are shown in Supplementary Table 1.  

 

Inference and Design 

At inference time, a set of seed sequences are provided along with the desired directional token 

(e.g., 〈𝑖𝑛𝑐〉 〈𝑑𝑒𝑐〉 for increasing lead response while decreasing zinc response). For our first 

computational round, we use as seeds all sequences that show higher lead response and lower 

zinc response than the wildtype. The model then generates new sequences conditioned on the 

prompt.  

 

Because the model operates directly in sequence space, it can be flexibly prompted with any 

combination of direction tokens without retraining. We use top-k sampling (k = 10) to generate 

diverse candidates. For each seed sequence, 20 candidates were proposed, and we filter by 

edit distance or number of mutations from the wildtype sequence as needed. This framework 

enables controllable and scalable exploration of the mutational landscape, guiding design 

toward functional improvement under user-define multi-objective constraints.  
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DNA library generation 

The DNA for wildtype PbrR was from Addgene (ID 167215). The protein sequence for this 

wildtype PbrR was from Cupriavidus metallidurans (Uniprot Q58AJ5). In this plasmid, the T7 

promoter is used to drive expression of the PbrR gene. All aTF DNA used in this study follow 

this design with changes only to the PbrR sequence to create the mutants. All DNA sequences 

can be found in the Supplementary Data 1 file. Plasmid DNA from Twist Biosciences was 

purchased for the alanine scanning mutagenesis library. For all other mutant libraries, eBlocks 

from Integrated DNA Technologies (IDT) were ordered with homology to the pJL1 backbone. 

The pJL1 backbone was ordered as a gBlock from IDT and amplified via PCR. The eBlocks and 

pJL1 backbone were assembled into plasmids using standard Gibson Assembly methods with a 

30 min incubation at 50 C.  

 

The cell-free generation of mutant libraries were prepared based on a previously described 

method63. Briefly, with the commercially purchased or Gibson assembled plasmids as the DNA 

template, linear expression templates (LET) were generated via PCR reaction using Q5 Hot 

Start DNA Polymerase (NEB) in 384-well PCR plates (Bio-Rad). The primers used to generate 

the LETs were 5’ CGATAAGTCGTGTCTTACCG 3’ and 5’ GCATAAGCTTTTGCCATTCTC 3’. 

LET yields were quantified using QuantiFluor dsDNA System (Promega). The Echo 525 was 

used to normalize LET DNA to a concentration of 4.5 ng/L (5 nM). All transfer steps between 

plates, except for the Echo normalization step, were done using an Integra VIAFLO liquid 

handling robot.  

 

Cell extract preparation 

Extract from BL21 StarTM (DE3) (Thermo Fisher Scientific C601003) optimized for endogenous 

transcription machinery was prepared based on previous reports90-92. The reporter plasmids 

used in this study are regulated under bacterial σ70 promoters, and for cell-free expression of 

these plasmids, the extracts were processed with ribosomal runoff reaction and subsequent 

dialysis. In summary, an overnight culture was used to inoculate 2xYTP media (16 g/L tryptone, 

10 g/L yeast extract, 5 g/L sodium chloride, 7 g/L potassium phosphate dibasic, 3 g/L potassium 

phosphate monobasic, pH 7.2) to a target starting optical density at 600 nm (OD600) of 0.05. The 

culture was grown at 37C shaking at 250 rpm. At OD600 = 0.5, isopropyl ß-D-1-

thiogalactopyranoside (IPTG) at a final concentration of 1 mM was used to induce expression of 

T7 RNA polymerase. The cells were grown to an OD600 of 3.0 before being harvested and 

centrifuged at 5,000 x g for 15 min at 4C. The resulting cell pellet was washed three times with 
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25 mL of cold wash buffer (14 mM magnesium glutamate, 60 mM potassium glutamate, 10 mM 

of Tris base, pH 7.8). Cells were pelleted between each wash step via centrifugation at 10,000 x 

g for 2 min. After pouring off the supernatant of the final wash step, the cell pellet was weighed 

and resuspended in 1 mL of wash buffer per gram of cell pellet. Cells were then lysed with a 

single pass through an Avestin EmulsiFlex-B15 homogenizer at 20,000-25,000 psig. The lysed 

sample was centrifuged for 10 min at 12,000 x g at 4C. The resulting supernatant underwent 

runoff by wrapping the tubes in aluminum foil and incubating them at 37C with shaking at 250 

rpm for 1 hr. The sample was centrifuged again for 10 min at 12,000 x g at 4C and the resulting 

supernatant is dialyzed for 3 hr 4C using a 10K MWCO dialysis membrane slowing spinning in 

dialysis buffer (14 mM magnesium glutamate, 60 mM potassium glutamate, 5 mM Tris base, 1 

mM DTT, pH 8.0). After dialysis, the sample was centrifuged for 10 min at 12,000 x g at 4C and 

the supernatant (cell extract) was aliquoted, flash frozen, and stored at -80 °C.  

 

For extracts enriched with a PbrR mutant, the above method was followed with some 

modifications. Within the same week as extract preparation, BL21 StarTM (DE3) cells were 

transformed with a sequence-verified plasmid of the mutant and plated on LB agar plates 

containing 50 mg/mL Kanamycin. Overnight cultures were grown with 50 mg/mL Kanamycin. 

During cell growth in 2xYTP media (no antibiotic), cells were induced at OD600 of 0.5 with 0.5 

mM IPTG to induce PbrR mutant expression and grown for 2 hours post-induction. After 

washing the cells three times and resuspending in wash buffer, cells were lysed using the 

QSonica Q125 sonicator with a 3.175 mm diameter probe at a frequency of 20 kHz and 50% 

amplitude by 10 s ON/OFF pulses for two rounds of 60 s (delivering ∼400 J per round). The 

samples were kept on ice for 10 min between sonication rounds. After sonication, the lysed cells 

were centrifuged for 10 min at 12,000 x g at 4C. The resulting supernatant was processed via 

runoff and dialysis and then flash frozen for storage at -80 °C.  

 

Cell-free expression biosensing reactions  

Similar to previous works64,90, CFE reactions were carried out using the PANOx-SP system93-95. 

To inhibit nuclease activity, 30 g/mL GamS (NEB) was added to reactions with LETs. The 

reporter plasmids (pPbrR-sfGFP, Addgene ID 167222 and pPbrR-XylE (C23DO enzyme), 

Addgene ID 167254) were purified from overnight cultures using Qiagen HiSpeed® Plasmid 

Maxi Kit. Echo-assisted assembly of 1-L CFE reactions were performed64 and after 15 hr 

incubation at 30C, sfGFP was quantified by measuring fluorescence on a Biotek Synergy Neo2 
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plate reader at excitation of 485 nm and emission of 528 nm. By-hand validation experiments 

were carried out using aTF LETs purified with Zymo DNA Clean & Concentrator kit as 10-L 

reactions in black 384-well plates, clear flat-bottom plates (Greiner #781906). These reactions 

were incubated for 15 hr at 30C in a BioTek Synergy H1 plate reader with reads every 5 min at 

excitation of 485 nm and emission of 528 nm. Bar charts represent endpoint data at 15 hr. For 

each enriched extract, volume (% v/v) optimizations were performed. Reactions using enriched 

extracts were also done as 10-L reactions in 384-well plates (Greiner #781906) and incubated 

in a BioTek Synergy H1 plate reader for kinetic data collection. Fluorescence was quantified by 

fluorescein isothiocyanate (FITC) standard curves (Sigma-Aldrich 46950), which were created 

via dilutions 50 mM sodium borate at pH 8.5. To quantify the color changes in sensing reactions 

using the catechol reporter, 10-L reactions in 384-well plates (VWR 76446-984) were 

incubated in a BioTek Synergy H1 plate reader at 30C for 12 hours with reads every 2 min at 

absorbance 385 nm for kinetic data collection. Pictures of the catechol reactions were taken 

using an iPhone 13 Pro. Lead solutions were prepared from lead chloride powder (Sigma-

Aldrich 268690) and zinc solutions were prepared from zinc acetate powder (Sigma-Aldrich 

383317).  

 

Lyophilization and rehydration of cell-free biosensing reactions 

CFE reactions for lyophilization were set up as described above and lyophilization was 

performed as reported in literature80. Briefly, 35-L or 15-L reactions were aliquoted into 0.2 mL 

PCR tubes (Thermo Scientific AB-2000) with a hole punctured in the cap by an 18-guage 

needle. Samples were flash-frozen in liquid nitrogen and quickly transferred to the manifold 

adapter on a VirTis AdVantage Pro Freeze Dryer. Lyophilization was performed at 100 mTorr 

with the condenser set to −80 °C. After lyophilization for 16 – 20 hours, samples were 

rehydrated with water and pipette-mixed.  

 

Municipal water collection and analysis 

For this work, the 1st and 5th liter municipal water samples were collected in 1 L wide-mouth 

HDPE bottles from households in Evanston and Chicago, IL. Non-acidified samples were used 

to test PbrR biosensing systems. Within two weeks of sample collection, 15 mL aliquots of each 

water sample were acidified to pH<2 using ultra-pure HNO3 (Ultrex, J.T. Baker, 67-70%). 

Samples were then analyzed via ICP-MS within 16 hours after acidification, per EPA Method 

200.896. ICP-MS data were generated using a ThermoFisher iCAP-Q in kinetic energy 

discrimination mode with helium as the collision gas. The instrument was equipped with 
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a CETAC ASX260 autosampler, calibrated with ten standard solutions and an acid blank. 

Standard solutions were made from two separate multielement stock solutions in 2% HNO3: (i) 

major municipal water cations with concentrations from 0 to 10 mg/L like calcium and 

magnesium and (ii) trace elements with concentrations from 0 to 10 µg/L, like lead. The average 

limit of detection (LOD) for 206-208Pb was 0.59 ng/L. Samples with lead concentrations initially 

measured above the calibration range were re-measured after dilution by the autosampler. The 

certification of the results were based on analyzing the standard reference material Aqua-197. 

 

Data collection and analysis  

Data in this manuscript represent n = 3 biological replicates unless otherwise noted in the text or 

figure legends. All data were collected using stated instruments and associated commercially 

available software. Commercial software used includes: Gen5 Version 2.09.2 (BioTek Synergy 

Neo2 or H1) for measuring GFP fluorescence or absorbance and Qtegra ISDS (ThermoFisher 

iCAP-Q ) for measuring municipal water content. Data analysis and figure generation were 

conducted using Excel Version 16.19.1, ChimeraX Version 1.998, Prism Version 10.4.2, Jupiter 

Notebook Version 7.2.2, and Chai-199.  

 

Statistics and reproducibility 

No statistical method was used to predetermine sample size. No data were excluded from the 

analyses. The experiments were not randomized. The Investigators were not blinded to 

allocation during experiments and outcome assessment. 

 

Data Availability 

DNA sequences for the PbrR mutants used in this study are included in the Supplementary Data 

1 file. The Uniprot accession code for wildtype PbrR is Q58AJ5 

[https://www.uniprot.org/uniprotkb/Q58AJ5/entry]. The Addgene accession code for the wildtype 

PbrR plasmid is 167215 [https://www.addgene.org/167215/]. The Addgene accession codes for 

the sfGFP and catechol reporter plasmids are 167222 [https://www.addgene.org/167222/] and 

167254 [https://www.addgene.org/167254/], respectively. Source data are provided with this 

paper. 

 

Code Availability 

The code used in this manuscript is available at: 
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Main code100: https://github.com/ShuklaGroup/multiobjective_controlled_extrapolation 

Data used in code demo: https://uofi.box.com/s/qpaatf9ge9f3ofqq7aybqwkxkid94fgd 
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Figure Legends/Captions (for main text figures) 

Figure 1 | An ML-guided, cell-free expression workflow for transcription factor-based 

biosensor development. Schematic shows the Design-Build-Test-Learn workflow applied to rapidly 

tune the sensitivity and selectivity of aTFs, with PbrR as a model. The ML model is trained on paired 

mutant data comprised of sequence comparisons with directional objective labels to predict new 

mutant sequences (Design). Acoustic liquid handling robotics are used to set up CFE reactions for 

testing mutant libraries (Build). The libraries are screened for desirable lead biosensor 

characteristics (Test). Sequence-function data is used to create and compare pairs of mutants to 

identify amino acid residues with high probability of being functionally important (Learn).  

 

Figure 2 | A PbrR-based biosensor for lead detection in cell-free expression systems. (A) 

Wildtype PbrR does not have the sensitivity to lead at the EPA action level (0.048 M lead or 10 

ppb)71 and has high sensitivity towards levels of zinc below the EPA maximum limit (76 M or 5 

ppm)73. Data represent three biological replicates at each ligand concentration (n = 3). (B) We 

previously engineered PbrR mutants64 to have sensitivity to lead at the EPA action level; however, 

these mutants have a strong response to zinc and give false positive results as a diagnostic for lead 

contamination in tap water. Data are presented as mean values +/- SD of three biological replicates 

(n = 3). Source data are provided as a Source Data file. 

 

Figure 3 | Rapid generation of a sequence-function landscape dataset for ML-guided directed 

evolution of PbrR. (A) Schematic of the cell-free workflow. Mutant libraries were rationally designed 

in a previous study64 and are screened against low lead concentration (1 M), high zinc 

concentration (30 M), and no ligand condition using a high throughput, plate-based assay. Mutant 

activity is measured as fluorescence and assessed by its fold change normalized to wildtype fold 

change (n = 2). The mean normalized fold change (norm FC) towards lead and zinc was calculated 

at every residue tested in the (B) alanine scanning mutagenesis library and (C) site saturation 

mutagenesis library. (D) Residue positions with multiple mutations towards lead selectivity over zinc 

are identified. (E) Scatterplot of individual mutant activity towards lead and zinc represented as the 

mean normalized FC of two biological replicates (n = 2). Source data are provided as a Source Data 

file. 

 

Figure 4 | ML-guided directed evolution of PbrR towards lead selectivity over zinc. (A) For the 

learn step of our DBTL cycle, mutant data is paired, and each pair is labeled with an observed 

direction of functional change towards lead and zinc. A sequence-to-sequence large language model 

is trained on paired data to predict mutants. We performed five rounds of engineering with three ML-

guided rounds (B, C, E) and two rational rounds using combinatorial mutagenesis strategies (D, F). 

Over the rounds, we observe a large shift in mutants with increased normalized FC to lead and 

decreased normalized FC to zinc, indicating lead selectivity over zinc. As the model is trained on 

more data, it focuses on selected residue positions in its predictions. Mutant data in the screening 

assay were collected in biological triplicate (n = 3) and the mean normalized FC for each mutant is 

used in the scatterplots. Source data are provided as a Source Data file. 
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Figure 5 | Mutations at six residues that accumulated in five rounds of PbrR engineering are 

important for lead selectivity over zinc. (A) Table highlights the mutations found in the top mutants 

of each round. Mutations found in the final best mutants are highlighted in pink while mutations only 

found in earlier rounds are highlighted in gray. The fluorescence and (B) fold change at 0.05 M Pb 

and 30 M Zn were measured in screen validation experiments. Data was collected in biological 

triplicate (n = 3). Mean fluorescence +/- SD is represented in (A). Mean fold change is plotted in (B) 

with error bars representing SD. Source data are provided as a Source Data file. 

 

Figure 6 | Freeze-dried cell-free biosensor based on mutant PbrR detects lead without zinc 

activation. (A) Schematic of PbrR-based biosensor as a point-of-use diagnostic. Cell-free 

biosensing reaction supplemented with an extract enriched with PbrR is lyophilized. Lyophilized 

reactions are rehydrated with water samples. (B) Residues on PbrR structure are highlighted to 

demonstrate the distribution of mutations across the protein for the best mutant 

D64K_N83I_I90A_K104T_H106A_P143R. (C) Dose response curves for the best performing 

biosensor mutant show high selectivity for lead over zinc at relevant lead concentrations. Hill slope 

for lead dose-response is 0.94. (D) Lyophilization does not negatively impact biosensor function. 

Data are presented as mean values +/- SD of three biological replicates (n = 3). (E) Schematic of 

PbrR-based biosensor using the enzymatic, colorimetric catechol reporter. (F) PbrR-based biosensor 

using catechol reporter functions after lyophilization and rehydration. A visible difference is seen in 

ligand conditions at t = 4 hrs. (G) Lyophilized biosensor reactions with the catechol reporter are 

rehydrated with municipal water samples containing a range of lead concentrations. All data shown 

were collected in biological triplicate (n = 3). Supplementary Figure 5 and Supplementary Figure 6 

detail how the ‘visible by eye’ line is determined. The time point at 7 hours was selected to 

discriminate between samples with lead and the no-lead control. Source data are provided as a 

Source Data file. 

 

 

 

Editorial Summary  
Allosteric transcription factors (aTFs) are promising tools for environmental and human health 
monitoring. Here the authors develop a multi-objective, machine learning-guided method to 
engineer an aTF-based portable diagnostic for environment sensing of lead in drinking water at 
the legal limit. 
 
Peer review information: Nature Communications thanks Haoran Yu, and the other, 
anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review 
file is available. 
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