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A synthetic cell-free pathway for 
biocatalytic upgrading of formate from 
electrochemically reduced CO2

 

Grant M. Landwehr1,2, Bastian Vogeli    1,2, Cong Tian3, Bharti Singal    4, 
Kyle Zolkin    5, Irene Martinez5, Anika Gupta    1,2, Rebeca Lion1,2, 
Edward H. Sargent    3, Ashty S. Karim    1,2   & Michael C. Jewett    1,2,5 

Electrochemical reduction of carbon dioxide (CO2) can produce important 
one-carbon (C1) feedstocks for sustainable biomanufacturing, such 
as formate. Unfortunately, natural formate assimilation pathways are 
inefficient and constrained to organisms that are difficult to engineer. 
Here we establish a synthetic reductive formate pathway (ReForm) in 
vitro. ReForm is a six-step pathway consisting of five engineered enzymes 
catalyzing nonnatural reactions to convert formate into the universal 
biological building block acetyl-CoA. We establish ReForm by selecting 
enzymes among 66 candidates from prokaryotic and eukaryotic origins. 
Through iterative cycles of engineering, we create and evaluate 3,173 
sequence-defined enzyme mutants, tune cofactor concentrations and 
adjust enzyme loadings to increase pathway activity toward the model 
end product malate. We demonstrate that ReForm can accept diverse C1 
substrates, including formaldehyde, methanol and formate produced from 
the electrochemical reduction of CO2. Our work expands the repertoire of 
synthetic C1 utilization pathways, with implications for synthetic biology 
and the development of a formate-based bioeconomy.
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The accelerating climate crisis poses one of the most urgent eco-
nomic and social challenges to humankind, driven by the unabated 
release and accumulation of CO2 in our atmosphere1. While impor-
tant strides have been made in carbon-free energy production2,3, 
there remains a critical need for cradle-to-gate carbon-negative 
manufacturing of goods. An emerging potential solution lies at the 
intersection of chemistry and biology, where the electrochemical 
conversion of CO2 into soluble organic molecules provides sub-
strates for enzymatic cascades to produce value-added chemicals4,5. 
Among these options, formate stands out as a promising bridge 
toward establishing a sustainable bioeconomy6,7. Formate can be 
efficiently generated through electrocatalysis8, exhibits high solu-
bility in water and simultaneously provides both a carbon source 

and reducing power. However, challenges exist in using formate 
as a substrate for biosynthesis. Nature has evolved only a limited 
number of formate-fixing reactions, and the organisms discovered 
to use these reactions are difficult to engineer and poorly suited for 
industrial applications9.

Recent efforts to develop a platform for formate utilization have 
focused on integrating formate assimilation pathways into workhorse 
biotechnology microbes such as Escherichia coli10,11 and Cupriavidus 
necator12. Despite notable progress in adapting the metabolism of 
these organisms, the production of value-added chemicals by syn-
thetic formatotrophs has remained limited due to unfavorable ther-
modynamic driving forces, environmental sensitivity and the inherent 
complexity of natural pathways10,13.
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value-added chemicals23. As a model end product, we selected malate, 
which had a market of more than 600 million US dollars in 202224. 
Second, we aimed to build a pathway with as many nonnatural enzy-
matic transformations as possible. This would require us to develop 
efficient tools for enzyme engineering that support the construction 
of synthetic pathways. Third, we aspired to demonstrate that the path-
way can accept formate produced by the electrochemical reduction 
of CO2, as well as additional C1 substrates including formaldehyde 
and methanol. Key design criteria included that the pathway be (1) 
thermodynamically favorable, (2) tolerant to aerobic environments, 
(3) composed of a minimal number of enzymes and (4) independent 
from catalytic starting intermediates. By combining cell-free protein 
synthesis, extensive protein engineering and pathway tuning, we 
report the conceptualization, design and optimization of the reduc-
tive formate pathway (ReForm) in vitro.

Results
Establishing a synthetic formate assimilation pathway
ReForm (Fig. 1a) consists of six individual enzyme-catalyzed reactions, 
with five core reactions requiring engineered enzymes operating on 
nonnative substrates. The pathway was conceptualized around the 
engineered C1–C1 bond forming enzyme oxalyl-CoA decarboxylase 
(oxc), a variant of which was shown to catalyze the acyloin condensa-
tion between formyl-CoA and formaldehyde with a superior catalytic 
efficiency compared with similar C1–C1 bond-forming enzymes25,26 
(Supplementary Figs. 2–4). Our initial design started with the activa-
tion of formate to formyl-CoA with an acyl-CoA synthetase (acs), fol-
lowed by its reduction to formaldehyde with an acyl-CoA reductase 
(acr). Oxc ligates formyl-CoA and formaldehyde to form glycolyl-CoA, 
which is reduced to glycolaldehyde by an acr. Glycolaldehyde can then 
be dehydrated and phosphorylated to form acetyl-phosphate by a 
phosphoketolase (pk). A phosphotransacetylase (pta) then transfers 
a CoA onto acetyl-phosphate to form acetyl-CoA.

Conceptually, our pathway resembles a combination of the upper 
branch of the FORCE pathway (ligation of formyl-CoA and formal-
dehyde) and the lower branch of the SACA pathway (conversion of 
glycolaldehyde to acetyl-CoA). However, ReForm uniquely begins with 
formate, which must be initially activated by the combined action of an 
acs and acr (Supplementary Fig. 1). Synthetic designs, such as ReForm, 
expand the diversity of metabolic solutions for formate assimilation, 
potentially offering a tailored fit to different desired products.

We began assembling ReForm by searching the literature for 
enzymes with a demonstrated capacity to catalyze the hypothetical 
reactions in Fig. 1a based on promiscuity (that is, a given enzyme can 
perform similar chemistries on molecules similar to the native sub-
strate). We selected an acs from Erythrobacter sp. NAP1 that natively 
transforms acetate to acetyl-CoA (instead of formate to formyl-
CoA)27, an acr from R. palustris that natively reduces propionyl-CoA to 

Synthetic biology offers a potential way to bypass existing bot-
tlenecks in natural formate assimilation pathways by designing new-
to-nature solutions. There are many examples of designer metabolic 
pathways that can explore space not sampled by evolution5,14 Because 
such pathways are freed from evolutionary constraints, it also becomes 
possible to create pathways with superior thermodynamic or kinetic 
characteristics compared with those found in nature. For example, the 
crotonyl-CoA/ethylmalonyl-CoA/hydroxybutyryl-CoA (CETCH) cycle15 
and the reductive tricarboxylic acid branch/4-hydroxybutyryl-CoA/
ethylmalonyl-CoA/acetyl-CoA (THETA) cycle16 are synthetic reaction 
networks of 17 enzymes each that directly convert CO2 into organic 
molecules. Both designed cycles have been shown to be more efficient 
than the most abundant natural carbon fixation cycle, the Calvin–Ben-
son–Bassham (CBB) cycle.

Linear synthetic pathways have also been described (Supplemen-
tary Fig. 1), including those that assimilate one-carbon (C1) substrates. 
For example, the formyl-CoA elongation (FORCE) pathway17 and the 
synthetic acetyl-CoA (SACA)18 pathway have achieved high product 
titers using formaldehyde as a substrate. The former is designed around 
the acyloin condensation between formyl-CoA and formaldehyde, 
while the latter is designed around the self-condensation of formalde-
hyde. Although formaldehyde benefits from a higher reactivity than 
formate, it suffers from toxicity to proteins and requires an additional 
sacrificial substrate to generate reducing power.

The construction of synthetic metabolic pathways that start with 
formate could address these challenges. However, the enzymatic con-
version of formate into formaldehyde has been difficult due to the lack 
of natural enzymes that can carry out the transformations required19–21. 
The core bottleneck is that formate must first be activated before it can 
be reduced to formaldehyde, owing to its low reduction potential13. 
One approach to overcome this limitation is the activation of formate 
using ATP. For example, recent work used a promiscuous acetate kinase 
to convert formate to formyl-phosphate followed by its reduction to 
formaldehyde with an engineered N-acetyl-γ-glutamyl phosphate reduc-
tase21. These reactions were connected to the FORCE pathway to produce 
glycolate from formate, but the difficulty in engineering this nonnative 
reduction resulted in low rates (kcat = 0.12 s−1). An alternative approach to 
produce formaldehyde is to first activate formate to formyl-CoA using an 
acetyl-CoA synthetase, followed by its reduction to formaldehyde with 
an acyl-CoA reductase19,22. Unfortunately, residual activity of acyl-CoA 
reductases with acetyl-CoA and low activity of these enzymes with their 
nonnative substrates have presented challenges thus far22.

Here, we set out to create a new-to-nature anabolic pathway from 
formate. We had three goals. First, we sought to enable the direct 
conversion of formate to acetyl-CoA and a subsequent end product. 
Reaching acetyl-CoA, a critical branchpoint between catabolism and 
anabolism, unlocks access to an immense breadth of metabolic path-
ways that have been developed over the past decades to produce 
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Fig. 1 | The synthetic reductive formate pathway. a, Synthetic metabolic 
pathway to convert formate into acetyl-CoA, composed of six reactions. 
b, Each enzyme addition is labeled on the set of traces, starting with a no-enzyme 
control. Extracted ion counts were determined for an m/z [M + H]+ of 797.1 for 
formyl-CoA, 828.1 for glycolyl-CoA and 812.1 for acetyl-CoA, which corresponds 

to the mass of the CoA-thioester with the incorporation of 1 (formyl-CoA) or 
2 (glycolyl-CoA and acetyl-CoA) 13C from 13C-formate. Formyl-CoA is shown 
in light gray and glycolyl-CoA in dark gray. Traces are representative of n = 3 
independent reactions.

http://www.nature.com/natchemeng


Nature Chemical Engineering

Article https://doi.org/10.1038/s44286-025-00315-6

propionaldehyde (instead of reducing formyl-CoA and glycolyl-CoA)28 
and a pk from B. adolescentis that natively cleaves D-fructose 6-Pi into 
acetyl-Pi and erythrose 4-Pi (instead of glycolaldehyde into acetyl-Pi)

18. 
Our initial enzyme candidates originate from diverse efforts in building 
synthetic metabolism: the acs and acr were used in two different efforts 
to mitigate carbon loss from photorespiration in the CBB cycle27,28, and 
the pk was used to enable the SACA pathway18.

To evaluate the feasibility of our hypothetical ReForm pathway, 
we carried out a stepwise construction of the pathway by sequen-
tially adding each purified enzyme to a buffer containing a labeled 
13C-isotope of formate and necessary cofactors. High-performance 
liquid chromatography–mass spectrometry (HPLC-MS) analysis of 
all three CoA-thioesters demonstrated that the initial sequence of 
the pathway was functional, but we did not observe the production of 
acetyl-CoA from the complete pathway (Fig. 1b and Supplementary Fig. 
5). The acyl-CoA reductase (acr) from R. palustris was previously shown 
to catalyze the unwanted reduction of acetyl-CoA to acetaldehyde29, 
and when tested, we observed promiscuous activity on acetyl-CoA as a 
substrate (Supplementary Fig. 6), suggesting that the acr was prevent-
ing acetyl-CoA detection.

Because we envisioned the ultimate use of ReForm is the produc-
tion of an end product downstream of acetyl-CoA, and to help pull 
the pathway forward thermodynamically, we added an additional 
biosynthetic step to produce malate via a malate synthase (mls) from 
E. coli15. While we were able to detect small quantities of malate (~1 µM; 
Supplementary Fig. 7), the selected enzymes’ low activities with non-
native substrates presented a major bottleneck. Furthermore, these 
results demonstrate that, rather than a simple refactoring of previous 
designer metabolic pathways or repurposing natural enzymes, engi-
neered enzymes would be required to implement ReForm.

Engineering a phosphoketolase into an acetyl-Pi synthase
To improve the titer and rate of our pathway, we sought to engineer the 
enzymes of ReForm. Our general strategy was to search for homologous 
enzymes that have high promiscuity toward the desired reactions and 
then apply directed evolution principles to engineer the enzymes for 
greater activities with the nonnative substrates. A key feature of our 
approach was the use of cell-free gene expression (CFE) systems for 
the rapid synthesis and functional testing of both protein homologs 
and mutants30–33. We demonstrated this approach by carrying out four 
enzyme engineering campaigns.

We first targeted the phosphoketolase reaction for producing 
acetyl-Pi (Fig. 2a), given previously reported low native activity for 
this reaction (Bado Pk, ~0.005 µM min−1 mg−1)18,34. We constructed a 
curated phylogenetic tree of the entire annotated pk protein family 
(IPR005593, composed of ~15,000 members; Supplementary Fig. 8), of 
which we randomly selected a set of 30 homologs based on evolution-
ary diversity to express, purify and test for activity with glycolaldehyde 
(Fig. 2b and Supplementary Fig. 9).

We identified several homologs with a higher activity than our 
initial candidate enzyme from literature, notably one (Csac Pk) with 
an approximately tenfold increase under the tested in vitro reaction 
conditions. Based on structural considerations (that is, 6 Å around 
the carbanion of the thiamine diphosphate cofactor ylide), evolution-
ary conservation (that is, an EVmutation probability density model 
trained on a multiple sequence alignment of evolutionarily related 
sequences)35 and a deep learning model trained to optimize local 
amino acid microenvironments36, we initially selected the top 16 
residues with potential importance for catalysis and substrate speci-
ficity to mutate (Fig. 2c). We used iterative site saturation mutagen-
esis (ISM) to identify and accumulate beneficial mutations of these 
residues for acetyl-Pi synthesis (Supplementary Figs. 10 and 11). Each 
round, residue positions that had low tolerance to mutations (for 
example, only the wild-type amino acid displayed nonzero activity) 
were replaced with new residues beyond the initial 16—selected on the 

basis of the same initial considerations—to survey a larger sequence 
space. A key feature of our cell-free ISM approach is that we collect 
sequence-fitness data for a given residue with all amino acid changes, 
allowing us to pick the highest-performing mutation. After three 
rounds of ISM and exploring 1,200 unique, sequence-defined mutants 
among 37 residues, we obtained a quadruple mutant (Csac M4) with a 
more than tenfold increase in catalytic efficiency compared with wild-
type (kcat/KM increase from 0.085 ± 0.016 to 1.18 ± 0.17 mM−1 min−1, 
respectively) (Fig. 2d,e and Supplementary Fig. 12). One residue 
found in Csac M4 (H132) was previously found to confer enhanced 
activity toward glycolaldehyde when mutated to an asparagine in 
Bado Pk. Our results confirm that H132N enhances activity in Csac 
Pk, but the optimal mutation at this residue was found to be H132S34 
(Supplementary Fig. 11).

To gain insights into the topology of the engineered enzyme’s 
active site, we solved the structure of Csac M4 at a resolution of 2.30 Å 
with cryo-electron microscopy (cryo-EM) (Fig. 2f and Supplementary 
Figs. 13 and 14). Soaking the enzyme with glycolaldehyde without 
the addition of phosphate as the resolving nucleophile enabled us 
to gain a glimpse of the reaction mechanism by covalently trapping 
glycolaldehyde on thiamine pyrophosphate (TPP) (Fig. 2g). This 
reaction intermediate, 2-acetyl-TPP (Ac-TPP) is shared between the 
canonical reaction mechanism and the engineered enzyme, enabling 
the switch in catalysis from phosphorolytic cleavage of sugars to the 
phosphorylation and dehydration of glycolaldehyde18,37. Observing 
the Ac-TPP cofactor provides insight into the nonnative reactivity with 
glycolaldehyde and could help guide future pk engineering efforts for 
sustainability applications34.

Divergent directed evolution of substrate-specific acyl-CoA 
reductases
After having success with our phosphoketolase engineering campaign, 
we next targeted the two acyl-CoA reductase reactions of ReForm. 
Engineering acr presented a unique challenge in that we needed to 
decrease activity with acetyl-CoA while simultaneously improving 
activity for formyl-CoA and glycolyl-CoA (Fig. 3a), a feat that could be 
difficult to achieve in cells given endogenous acetyl-CoA levels. To help 
control specificity, our approach was to engineer two distinct enzymes 
to catalyze these respective reductions instead of a single enzyme with 
selectivity for both substrates. We randomly selected a diverse set of 34 
candidates from among three protein families with reported acylating 
dehydrogenase activity (IPR013357, IPR012408 and IPR00361; Supple-
mentary Fig. 15) to express and characterize (Supplementary Fig. 16). 
Serendipitously, we identified a single acr with high activity for both 
formyl-CoA and glycolyl-CoA from the anaerobic photoautotrophic 
bacteria Chloroherpeton thalassium that surpassed the activity of our 
initial enzyme (Rpal Acr28) by approximately twofold (Fig. 3b and Sup-
plementary Figs. 16c and 17). However, this increase in activity for our 
two desired substrates was concomitant with an increase in reactivity 
toward acetyl-CoA (Supplementary Fig. 17c).

To decrease activity toward acetyl-CoA, we tested a 16-residue, 
site-saturated library of Ctha Acr mutants against all three CoA-thi-
oesters. The goal was to find mutations that selectively increased 
activity for formyl-CoA or glycolyl-CoA and/or decreased activity for 
acetyl-CoA. We screened residues surrounding the CoA-thioester 
binding pocket (a total of 915 unique substrate–mutant pair reac-
tions) by individually supplying formate, glycolate or acetate along 
with Enap Acs (in situ producing a CoA-thioester) and measuring 
NADH oxidation from each acr mutant (Fig. 3c and Supplementary 
Fig. 18a–d). We identified multiple residues that imparted control 
over substrate specificity, with residues for formyl-CoA (I251, A253 
and L417) and glycolyl-CoA (S119 and T120) surprisingly sharing little 
in common (Fig. 3d). For example, L417F increased specificity as well as 
activity. We focused on mutations that provided conditional orthogo-
nality (that is, mutations that increased activity for formyl-CoA but 
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by quantification of CoA and acetyl-CoA (mean of n = 3, error bars indicate 
±s.d.) through coupling the pk with a pta (Supplementary Fig. 9). Complete list 
of species names can be found in Supplementary Table 3. c, A schematic of the 
cell-free protein engineering workflow. Site saturation mutagenesis and cell-free 
protein expression are carried out in less than 24 h to generate sequence-defined 
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9CD4) overlaid with their respective electron density map of the cofactor.
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not glycolyl-CoA), moving forward with those that imparted control 
over substrate specificity (that is, rate of desired reaction over rate 
of reaction on acetyl-CoA; Supplementary Fig. 18e–h). After fixing 
different beneficial mutations, additional rounds of ISM focused 
on a downselected set of eight residues identified in the first round 
that seemed to most impact substrate preference (Supplementary 
Fig. 19 and 20), which led to a bifurcation in the evolution paths of 
mutagenesis (Fig. 3e).

We performed multiple rounds of ISM for a formyl-CoA and gly-
colyl-CoA specific acr separately, resulting in an acrf triple mutant 
(Cthalf M3; Fig. 4a) with a 15-fold increase in specificity for formyl-
CoA (Supplementary Fig. 21) and an acrg double mutant (Cthalg M2; 
Fig. 4b) with a 13-fold increase in specificity for glycolyl-CoA (Sup-
plementary Fig. 21). While all mutations are found in the substrate 
binding pocket, the final mutants have no mutated residues in com-
mon (Supplementary Fig. 22). When comparing these mutations with 
earlier work that similarly engineered Rpal Acr to increase specificity 
toward glycolyl-CoA28, we found that there are two shared residues in 
common upon alignment of the two sequences. For example, Cthalg 
M2 contained mutation T250V, analogous to the Rpal Acr L326I. An 

additional mutation in Rpal Acr, V329T, is found only in our formyl-CoA 
reductase, A253S. These data point to complex epistatic interactions 
within the active sites of these acyl-CoA reductases that are difficult 
to navigate for increases in specificity over the native reaction. They 
further highlight the need for high-throughput CFE methods for navi-
gating sequence–function landscapes as we have observed before38 
but uniquely show here for tuning substrate specificity.

Engineering a formyl-CoA synthetase
Our final enzyme engineering challenge was the initial acyl-CoA syn-
thetase reaction that activates formate—a reaction historically dif-
ficult to engineer owing to these enzymes’ native activity with, and 
the high cellular abundance of, acetate20. Given that formate would 
be exogenously supplied to the reaction in saturating quantities, we 
focused on improving the turnover number (kcat) of acs. Our starting 
point was an acetate-activating acs from Erythrobacter sp. NAP1, which 
was previously engineered to change its native substrate specificity to 
glycolate, highlighting its engineerability27. Exploring 18 residues over 
four rounds of ISM resulted in a quadruple mutant (Enap M4) with a 
twofold increase in kcat for formate (Supplementary Figs. 23–25). All 
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Fig. 3 | Engineering distinct substrate-specific acyl-CoA reductases. 
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both desired reactions in ReForm and an unwanted reaction with acetyl-
CoA. b, Exploring the substrate promiscuity of diverse homologs resulted 
in an enzyme with increased activity for both formyl-CoA and glycolyl-CoA. 
The rate was determined by measuring a decrease in NADH absorbance as 
the reaction proceeded (mean of n = 3, error bars indicate ±s.d.) and then 
normalized to Rpal Acr. S. rub, Serratia rubidaea; V. aer, Vibrio aerogenes; 
C. tha, Chloroherpeton thalassium; L. mon, Listeria monocytogenes; R. pal, 

Rhodopseudomonas palustris. c, ISM of 16 residues showing reaction rate 
normalized to wild type (WT) (colored white; n = 1). Mutations that were 
identified to either increase or retain activity with formyl-CoA or glycolyl-CoA 
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characterization of the specificity of hits identified in ISM (mean of n = 3, 
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four accumulated mutations were in the putative substrate binding 
pocket and fill in the active site with bulky, hydrophobic amino acids 
(Supplementary Fig. 26). Comparison of Enap M4 with the previously 
engineered variant for glycolate activation indicated a shared mutated 
residue at position 379. Interestingly, a V379A substitution was benefi-
cial for opening the active site for glycolate, which supports the hypoth-
esis that a V379I substitution closes in the active site for the slightly 
smaller formate27. Further expression of acs in a strain of E. coli with a 
genomic knockout of a lysine acetyltransferase that posttranslationally 
inactivates acs in vivo further increased kcat by another fivefold, result-
ing in a tenfold overall increase in activity27,39 (2.5 ± 0.3 to 25 ± 1.7 s−1; 
Fig. 4c and Supplementary Fig. 25). While we did not observe a signifi-
cant shift in KM throughout the engineering campaign, the measured 
values do fall in similar ranges to naturally found formate-activating 
enzymes (for example, formate-tetrahydrofolate ligase40), indicating 
we may have reached the inherent natural limit to formate affinity given 
its low molecular mass and low hydrophobicity41.

ReForm pathway optimization
Our comprehensive ISM campaigns assessed 3,173 sequence-defined 
enzyme variants to develop four engineered enzymes required for 
ReForm (Fig. 4 and Supplementary Fig. 27). To increase titers (Sup-
plementary Fig. 28), we carried out an optimization of the pathway in 
three steps. First, we tuned cofactor and enzyme loading with definitive 

screening design (DSD; Supplementary Fig. 29). The objective was to 
increase malate titers given a range of possible cofactor and enzyme 
concentrations. We restricted maximum values of all components to 
prevent superior conditions resulting simply from increased enzyme 
loading (enzyme concentrations were capped between 1 μM and 
20 µM). Second, we added cofactor regeneration to recycle cofac-
tors and keep concentrations high (Supplementary Fig. 30). A formate 
dehydrogenase was added to regenerate NADH from formate while a 
polyphosphate kinase and polyphosphate were added to regenerate 
ATP42. Recycling free CoA occurs at the final reaction of the pathway 
to produce malate; optimization of CoA recycling should be evaluated 
in the context of the downstream reaction pathway from acetyl-CoA. 
Third, we added a formyl-phosphate reductase (fpr) to recycle formyl-
phosphate that could be produced from an unwanted side reaction 
between formyl-CoA and the phosphotransacetylase into formalde-
hyde21 (Supplementary Fig. 31). When combined, ReForm pathway 
titers increased by three orders of magnitude over our original pathway 
iteration (Supplementary Fig. 32). We also measured the three CoA-
thioester intermediates to gain information on pathway function and 
identify rate-limiting steps in the pathway (Supplementary Fig. 32). 
Interestingly, we observed a spike of formyl-CoA production within the 
first 30 min, closely followed by glycolyl-CoA. As malate production 
did not reach a steady state until 2 h, these data point to a potential 
bottleneck at the phosphoketolase reaction.
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ReForm assimilates diverse C1 substrates in a modular fashion
We next attempted to demonstrate the modularity of the ReForm archi-
tecture with diverse C1 substrates (Fig. 5a). First, we focused on using 
formate that was a direct product of the electrochemical reduction of 
CO2 as a substrate. Formate was produced using a commercial SnO2 inor-
ganic catalyst in an electrochemical module at a rate of 150 mM h−1 per 
milligram of catalyst. Within 20 min, 50 mM formate was synthesized in 
isolation as a pure product, which was confirmed by nuclear magnetic 
resonance (NMR) (Supplementary Fig. 33). In other words, impurities 
were not observed. Then, this formate was combined with the enzymes, 
cofactors and buffers of ReForm. We observed 606 ± 23 µM of malate 
produced from 8 mM of crude electrochemically derived formate at 
24 h (Fig. 5b and Supplementary Fig. 34).

Second, we asked how robust ReForm was to the assimilation of 
other C1 substrates. We therefore designed alternative routes through 
ReForm to convert both formaldehyde and methanol into acetyl-CoA 
with no changes to the core architecture of the pathway except for 
simply removing the first enzymatic step (acs; Fig. 5a). Notably, these 
two variations are cofactor neutral (that is, there is no net theoretical 
change in reducing equivalents or ATP per molecule of acetyl-CoA 
produced) unlike the pathway from formate. Following pathway opti-
mization (Supplementary Fig. 35), we were able to produce malate 
from formaldehyde (Fig. 5c and Supplementary Fig. 36) and metha-
nol (Fig. 5d and Supplementary Fig. 37). Interestingly, CoA-thioester 
intermediate profiles over time differ when changing C1 substrates 
(Supplementary Figs. 32 and 36). This phenomenon could be due to the 
high concentration of NADH needed to push the pathway forward from 
formate, while the formaldehyde variation relies on acr’s reversibility 
governed by the NADH:NAD+ ratio and a high starting concentration 
of NAD+. The tradeoff of utilizing methanol and formaldehyde as sub-
strates is that, while possessing a higher thermodynamic driving force 
than formate, an additional source of electrons is needed to provide 
reducing power for reactions beyond acetyl-CoA that require them, 
whereas formate can provide reducing power through the addition 

of a formate dehydrogenase. Taken together, our results highlight 
the modularity of the ReForm architecture, showing flexibility for 
bioconversion applications.

Discussion
In this work, we demonstrated a synthetic chemoenzymatic cascade in 
vitro called ReForm toward the valorization of organic C1 substrates. 
To build ReForm, we developed and implemented a rapid cell-free 
protein synthesis pipeline to engineer four enzymes by testing 3,173 
sequence-defined mutants derived from 66 enzyme candidates from 
both eukaryotic and prokaryotic origins. Through extensive enzyme 
discovery, engineering and pathway optimization, we were able to 
improve pathway titers from formate through acetyl-CoA toward the 
end product malate by several orders of magnitude. Moreover, we 
showed the ability to use formate from electrochemically reduced 
CO2 as a carbon source. While each C1 feedstock has distinct advan-
tages—such as methanol’s higher energy density and formate’s lower 
toxicity—the modularity of ReForm could enable their interchangeable 
or combined use, depending on the application context.

A rise in designer synthetic pathways15–21,43 has inspired path-
ways like ReForm. For example, the FORCE pathway17 and the SACA 
pathway18 have achieved high product titers using formaldehyde as a 
substrate. Simple refactoring of these pathways to use new substrates 
often achieves little success without further engineering efforts16. With 
respect to formate assimilation, extending the pathway to formate 
has remained difficult with acyl-CoA reductases owing to specificity 
challenges. Here, using CFE, we were able to bypass cellular constraints 
and carry out four extensive enzyme engineering campaigns target-
ing activity and specificity to build the complete pathway. ReForm 
takes an important step toward building completely new-to-nature 
pathways as five out of the six steps required engineered enzymes, 
compared with state-of-the art pathways that are often built around 
only one to two engineered enzymes with many natural enzymes 
(Supplementary Fig. 1).

a Chemoenzymatic cascade to transform C1 substrates

c Formaldehydeb Formate derived from CO2 d Methanol

0 12 24 36 48
0

200

400

600

Time (h)

606 ± 23 µM

0

200

400

600
585 ± 10 µM

0 12 24 36 48
Time (h)

[m
al

at
e]

 (µ
M

)

0

200

400

600

0 12 24 36 48
Time (h)

75 ± 6 µM

H

OH

H

H

Malate
CO2

OH

O2C
H O

O

H SCoA

O

H H

O

SCoA

O

HO
SCoA

O
ATP,
CoA

NADH NADH
NAD   ,
CoA

Formate

Formaldehyde

Acetyl-CoA

acs oxc

acr

acr mls

NAD , CoA

AMP

aox

O2 H2O2

Methanol

pk
pta

CoA

Glyoxylate

Oxidative branch

Reductive branch

CO2

Electricity

ADP

ATP AMP

ppk-I
PolyPn–1

PolyPn

PolyPn–1
ppk-II

PolyPn–2 NADH NAD

fdh
FormateCO2

Cofactor recycling

SnO2

catalyst

Fig. 5 | Chemoenzymatic conversion of C1 substrates into acetyl-CoA. a, The 
combined chemoenzymatic cascade enables the assimilation of C1 substrates 
(formate, CO2, formaldehyde and methanol) into acetyl-CoA. Malate synthase 
(mls) is added to convert acetyl-CoA into malate. Formate and CO2 can be 
assimilated through the reductive branch of ReForm, while formaldehyde and 
methanol can be assimilated through the oxidative branch. b–d, Time course 
of malate synthesis with formate derived from the electrochemical reduction 

of CO2 (b), formaldehyde (c) and methanol (d) as substrates. The black data 
point indicates the maximum observed malate titer for each substrate. Malate 
concentration was determined by liquid chromatography–MS with an m/z 
[M − H]− of 133.01 for 12C-malate (CO2, formaldehyde and methanol as substrates) 
and 135.01 for the malate containing two 13C from 13C-formate (formate as a 
substrate) (mean of n = 3, error bars indicate ±s.d.).

http://www.nature.com/natchemeng


Nature Chemical Engineering

Article https://doi.org/10.1038/s44286-025-00315-6

Consisting of only six reactions, ReForm requires a lower total 
enzyme loading to achieve higher potential specific titers compared 
with longer synthetic pathways (~4 mg ml−1 total loading; less than 
half of the state-of-the-art in vitro synthetic pathway THETA)16. The 
metabolic energy efficiency of ReForm (only 4 ATP and 2 NADH equiva-
lents per acetyl-CoA compared with 7 ATP and 4 NAD(P)H of the Calvin 
cycle and 4 ATP and 5 NAD(P)H of the THETA cycle; Supplementary 
Fig. 38) helps to enable similar titers of acetyl-CoA to be achieved 
while operating at these lower loadings16,44 (Supplementary Table 1). 
Notably, this energy balance does not account for the input required 
for electrochemical reduction of CO2 in ReForm. While excelling in 
specific titers and reaction longevity as compared with the THETA and 
CETCH cycles44, ReForm has lower peak productivities (Supplementary 
Table 1). This tradeoff is probably caused by the relatively low reaction 
rates of the engineered enzymes, which compound when assembled 
into the entire pathway. However, the electrochemical production of 
formate additionally provides the dual advantage of carbon coming 
from CO2 and electrons coming from electricity, eliminating the need 
for a sacrificial substrate to provide reducing power while avoiding rate-
limiting enzymatic CO2-fixing steps as seen in some synthetic pathways.

A feature of our work was that the discovery efforts led to under-
standing (for example, residues determining acr specificity, cryo-EM 
structure of pk capturing the reaction intermediate), which could drive 
sustainability applications in the future. Indeed, we anticipate that 
ReForm will facilitate efforts to build and improve synthetic C1 utilization 
pathways for a formate-based bioeconomy, both in cells and in in vitro 
cascades. The linear nature and minimal overlap with central metabolism 
of ReForm may simplify its implementation into living cells16. However, 
interference of the engineered enzymes with a cell’s existing metabolism 
and the limited availability of necessary cofactors (for example, a high 
ratio of NADH:NAD+ is needed to drive the pathway forward) present 
challenges. The residual side reactivity of engineered acyl-CoA reductases 
with acetyl-CoA, while small, provides an area for further engineering. The 
recently proposed and engineered formyl-phosphate reduction route to 
produce formaldehyde from formate may be a tenable solution to over-
come this challenge when integrated with ReForm; however, current rates 
of these enzymes are too low (kcat = 0.12 s−1)21. We anticipate that rigorous 
pathway design, modeling and iterative engineering would be required 
for in vivo implementation of ReForm, as was the case for the reductive 
glycine pathway10 and the synthetic methanol assimilation pathway45.

In vitro enzymatic cascades are beginning to show promise for 
sustainable production of value-added chemicals46. ReForm could 
similarly be implemented in vitro, but further innovations in areas such 
as cofactor costs and stability would need to be implemented. The use 
of noncanonical cofactors, such as replacing NADH with the cheaper 
nicotinamide mononucleotide, holds promise as one approach with 
a systematic engineering framework discovered to change reducing 
equivalent preferences of natural enzymes47. New evidence also indi-
cates the possibility of the enzymatic reduction of carboxylic acids 
to aldehydes without activation by ATP and CoA, which could lead to 
an ATP-free carbon assimilation pathway48. In both cells and cell-free 
systems, improvements in volumetric productivities (g product l−1 h−1), 
reaction longevity and total turnover per catalyst will be required for 
commercial production.

By combining electrochemistry and synthetic biology, the ReForm 
pathway expands the possible solution space of generalizable CO2-
fixation strategies. While existing biological strategies have been 
impactful on their own49,50, we anticipate that hybrid biological and 
chemical technologies will become critically important for a carbon 
and energy efficient future.

Methods
Materials and bacterial strains
All consumables were purchased from Sigma-Aldrich unless stated oth-
erwise. Standard microtiter plates (96- and 384-well) were purchased 

from BioRad. 13C-sodium formate was purchased from Cambridge 
Isotope Laboratories. DNA for all enzymes used was ordered from 
Twist Bioscience in the vectors pJL1 (Addgene #69496) for expression 
via CFE or pETBCS, a modified pET-22b vector51 (Novagen/EMD Mil-
lipore) for recombinant expression in E. coli. Codon optimization for 
E. coli was either performed using Integrated DNA Technologies or 
Twist Bioscience. NEB 5-alpha chemically competent E. coli cells were 
used for cloning (NEB), BL21 Star (DE3) (Invitrogen) cells were used 
for cell-free lysate production and BL21 (DE3) chemically competent 
cells (NEB) were used for recombinant expression of proteins. For the 
expression of acyl-CoA synthetases, an E. coli BL21 (DE3) patZ knock-
out was created using a CRISPR–Cas9 and λ-red recombination-based 
method52,53. In brief, the CRISPR endonuclease introduces a double-
stranded DNA break in a locus of interest. Provided with a donor DNA 
that is homologous to sections of the chromosome on 5′ and 3′ ends 
but lacks the knockout gene, λ-red proteins will recombine the donor 
DNA into the chromosome. This simultaneously removes the gene of 
interest and the site where the DNA break is occurring, allowing the cells 
to survive if the knockout was successful. To confirm the knockout of 
patZ, single colonies were picked and analyzed by colony polymerase 
chain reaction (PCR) with primers flanking the gene.

Cell-free protein synthesis and enzyme engineering
Crude cell extracts were prepared as previously described using E. coli 
BL21 Star (DE3) cells (Invitrogen)54. CFE reactions were performed on 
the basis of the Cytomim system55,56 and, unless otherwise noted, car-
ried out in 96-well or 384-well PCR plates (Bio-Rad) as 15-µl reactions 
with 1 µl of linear expression template (LET) serving as the DNA tem-
plate. In brief, 15-μl reactions were carried out with final concentrations 
of 8 mM magnesium glutamate, 10 mM ammonium glutamate, 130 mM 
potassium glutamate, 1.2 mM ATP, 0.85 mM of GTP, CTP and UTP each, 
0.03 mg ml−1 folinic acid, 0.17 mg ml−1 tRNA (Roche), 0.4 mM NAD+, 
0.27 mM CoA, 4 mM oxalic acid, 1 mM putrescine, 1.5 mM spermidine, 
57 mM HEPES pH 7.2, 33 mM phosphoenolpyruvate (Roche), 30% v/v 
cell extract and the remaining volume with water to 15 μl. Reactions 
were incubated at 30 °C for 16–20 h.

Cell-free site saturation mutagenesis was performed as described 
previously38. In brief, primers were designed using Benchling with 
melting temperature calculated by the default SantaLucia 1998 algo-
rithm. The general heuristics we followed for primer design were 
a reverse primer of 58 °C, a forward primer of 62 °C and a homolo-
gous overlap of approximately 45 °C. All primers were ordered from 
Integrated DNA Technologies; forward primers were synthesized in 
384-well plates normalized to 2 µM for ease of setting up reactions. 
All cloning steps were set up using an Integra VIAFLO liquid handling 
robot in 384-well PCR plates (Bio-Rad). The cell-free library generation 
was performed as follows: (1) the first PCR was performed in a 10-µl 
reaction with 1 ng of plasmid template added, (2) 1 µl of DpnI (NEB) 
was added and incubated at 37 °C for 2 h, (3) the PCR was diluted 1:4 
by the addition of 29 µl of nuclease-free water, (4) 1 µl of diluted DNA 
was added to a 3-µl Gibson assembly reaction and incubated for 50 °C 
for 1 h, (5) the assembly reaction was diluted 1:10 by the addition of 
36 µl of nuclease-free water, and (6) 1 µl of the diluted assembly reac-
tion was added to a 9-µl PCR reaction. All PCR reactions used Q5 Hot 
Start DNA Polymerase (NEB). The product of the second PCR is a LET 
for expression in CFE, which are amplified using universal forward 
(CTGAGATACCTACAGCGTGAGC) and reverse (CGTCACTCATGGT-
GATTTCTCACTTG) primers. To accumulate mutations for ISM, 3 µl 
of the round ‘winner’ from the diluted Gibson assembly plate was 
transformed into 20 µl of chemically competent E. coli (NEB 5-alpha 
cells). Cells were plated onto lysogeny broth (LB) plates containing 
50 µg ml−1 kanamycin (LB-Kan). A single colony was used to inoculate 
a 50-ml overnight culture of LB-Kan, grown at 37 °C with 250 rpm 
shaking. The plasmid was purified using ZymoPURE II Midiprep kits 
(Zymo Research) and sequence confirmed.
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Cryo-EM sample preparation and data collection
Csac Pk M4 was purified as described below. The protein was then 
additionally purified to homogeneity using a Cytiva HiPrep Sephacryl 
S-200 HR Column according to the manufacturer’s specifications with 
a running buffer containing 50 mM HEPES pH 7.4, 150 mM NaCl and 
250 µM MgCl2. After purification, TPP was added to a final concentra-
tion of 50 µM. To covalently trap glycolaldehyde on TPP, 1 mg ml−1 of 
purified protein was soaked in 25 mM glycolaldehyde for 10 min at 
room temperature, and then the buffer was exchanged into the run-
ning buffer using Amicon Ultra-0.5 centrifugal filters (50 kDa MWCO; 
EMD Millipore).

Ultrafoil 1.2/1.3 Au 300 mesh grids were glow discharged, and 3 μl 
of the protein sample at 1 mg ml−1 was applied to the grid surface. The 
grids were incubated for 5 s in the humidity chamber of Vitrobot Mark 
IV set at 100% humidity and 4 °C. Grids were blotted at blot force 2 for 
3 s and quickly plunge frozen in liquid ethane. Cryo-EM imaging was 
performed on a ThermoFisher Titan Krios equipped with Falcon 4i 
direct electron detector and SelectrisX post-column energy filter. The 
microscope was operated at 300 kV accelerating voltage with a nominal 
magnification of ×130,000, which resulted in a magnified pixel size of 
0.98 A. Each movie was recorded at the total electron dose of 40 e− Å−2 
over 38 frames. The images were obtained at a defocus ranging from 
−0.8 to −1.8 μm.

Image processing and 3D reconstruction
Preprocessing of both datasets was performed using cryoSPARC57. 
Dose-fractionated movies were subjected to beam-induced motion 
correction and dose weighting using patch motion correction. Con-
trast transfer function parameters were performed for each motion-
corrected micrograph followed by micrograph curation based on 
parameters such as average intensity and contrast transfer function 
fit resolution. A total of 3,159,785 particles were extracted from 5,900 
micrographs for the Csac Pk M4-TPP, and 3,761,029 particles were 
extracted from 6,652 micrographs for the Csac Pk M4-HDE/HTL dataset. 
Subsequently, three to five rounds of two-dimensional classification 
were performed, followed by multiclass ab initio and heterogeneous 
refinement. Homogeneous refinement was performed on the largest 
class from the heterogeneous refinement job on the binned particles. 
Furthermore, the particles were reextracted to 0.95 Å per pixel, and 
another round of homogeneous refinement was performed. UCSF 
ChimeraX (v.1.7)58 was used for map and model visualization.

Molecular model building
AlphaFold2 was used to generate a model dimer of Csac Pk M4 using 
its protein sequence59. The X-ray crystal structure of phosphoketolase 
from Bifidobacterium breve complexed with TPP/HDE/HTL (PDB: 3ahc, 
3ahe and 3ahd)60 was used to align with the AlphaFold model to roughly 
estimate the position of ligand in the maps. The ligands were combined 
with the AphaFold-generated dimer model and were fit into the maps 
using the ChimeraX ‘fit-in-map’ function. To improve the modeling, 
several rounds of interactive model adjustment in Coot (v0.9.8.8 EL) 
followed by real-space refinement of the fit model were performed in 
Phenix (v 1.21.1-5286) from SbGrid suite61 using secondary structure 
restraints in addition to default restraints. The final model was gener-
ated using Phenix refinement.

ReForm assays
All reactions were performed at 30 °C with the reaction size noted 
below. All reactions were quenched by addition of 5 µl 10% w/v formic 
acid to 20 µl of sample (or 3.75 µl 10% w/v formic acid to 15 µl of sam-
ple), centrifuged at 4,000g for 10 min at 4 °C to remove precipitated 
protein, and either immediately prepared for analysis or stored at 
−80 °C until needed. To prepare for MS analysis of CoA-thioesters and 
malate, 20 µl of quenched reaction was transferred to a clean vial and 
diluted 1:2 with 20 µl of H2O.

Stepwise pathway construction
Final reactions contained 20 mM sodium phosphate buffer pH 7.4, 
5 mM ATP, 6.5 mM NADH, 10 mM MgCl2, 0.5 mM CoA, 50 µM TPP, 1 mM 
glyoxylate, 50 mM 13C-sodium formate, 5 U ml−1 pyrophosphatase 
(Sigma-Aldrich I5907), 3 µM Enap Acs, 3 µM Rpal PduP, 10 µM Mext 
Oxc M4, 10 µM Bado Pk, 0.25 µM Ecol Pta and 1 µM Ecol Mls. A reagent 
mix was first made with all components except for the core ReForm 
enzymes and distributed into seven 1.5-ml Eppendorf tubes. Enzymes 
were added to the final concentrations listed above with each sequen-
tial reaction containing an additional enzyme. Extra H2O was added 
to adjust the final reaction volume to 200 µl. A negative control con-
taining only H2O and no additional enzyme was also included. These 
reactions were sampled for both CoA-thioesters and malate. Then, 
20-µl samples were taken at various time intervals (10, 30, 60, 90, 120, 
150, 180 and 240 min) to ensure that no time-resolved production of 
intermediates or malate was missed.

Initial unsuccessful pathway attempts (that produced detectable 
formyl-CoA and glycolyl-CoA but no detectable acetyl-CoA or malate) 
utilized lower concentrations of Bado Pk (5 µM) and Mext Oxc M4 
(5 µM), lower concentrations of Enap Acs and Rpal PduP (1 µM each) 
and higher concentrations of Ecol Pta (1 µM). Pta was decreased after 
observing potential side reactivity with formyl-CoA (an observed 
decrease in formyl-CoA after the direct addition of pta).

Pathway assessment when leaving one enzyme out
Reactions were set up as described for the stepwise pathway construc-
tion except for the decrease of Ecol Pta from 0.25 µM to 0.125 µM. A 
reagent mix was first made with all components except for the core 
ReForm enzymes and formate and distributed into eight 1.5-ml Eppen-
dorf tubes. Each reaction had a single enzyme removed (or formate) 
with extra volume of H2O added to bring up the final reaction volume 
to 90 µl. Then, 20-µl samples were taken at various time intervals (60, 
120, 180 and 240 min) to ensure that no time-resolved production of 
intermediates or malate was missed.

DSD to improve pathway activity
The three-level definitive screening design (DSD) was performed using 
JMP Pro 17, with upper and lower limits and the reaction components 
varied found in Supplementary Fig. 29. All engineered variants of 
enzymes were used in this experiment. We first performed a screen of 21 
reaction conditions to map out the relationship between all tested vari-
ables and malate production. Final reactions contained 20 mM sodium 
phosphate buffer pH 7.4, 2 mM ATP, 4 mM NADH, 10 mM MgCl2, 50 µM 
TPP, 1 mM glyoxylate, 50 mM 13C-sodium formate, 5 U ml−1 pyrophos-
phatase (Sigma-Aldrich I5907) and 0.5 µM Ecol Mls. The concentra-
tions of remaining enzymes and CoA varied between each reaction 
condition. A reagent mix was first made with all components except for 
the varied enzymes and CoA and distributed into a 96-well PCR plate. 
Different dilutions of each varied component were added to the reac-
tions to bring up the total volume to 15 µl, with each condition run in 
triplicate for 4 h. With the resulting data, three regression models were 
fit with default variables: stepwise, stepwise (exclusive to nonzero data 
points) and support vector machines (SVMs). All models were fit using 
default parameters that modeled only first-order interactions between 
variables. For stepwise models, a minimum Bayesian information crite-
rion (BIC) stopping rule was used. To determine predicted optimized 
conditions, the prediction profiler was set to maximize desirability. We 
then went on to validate predictions by comparing the best condition 
that was observed in the screen with the three predicted conditions. 
The stepwise prediction set everything to the upper bound of the DSD 
screen (acrf = formyl-CoA specific acr; acrg = glycolyl-CoA specific acr): 
1 mM CoA, 2 µM acs, 5 µM acrf, 5 µM acrg, 20 µM oxc, 20 µM pk and 
0.01 µM pta. The stepwise (nonzero) prediction was identical, except 
that oxc was set to the lower bound of the DSD screen (2 µM). The SVM 
prediction had 0.94 mM CoA, 1.18 µM acs, 3.63 µM acrf, 3.66 µM acrg, 
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14.27 µM oxc, 20 µM pk and 0.43 µM pta. These reactions were set up 
identically to the DSD screen.

After optimizing the pathway for malate production from for-
mate, we repeated DSD with the variant of ReForm that uses formal-
dehyde as a substrate. As above, all engineered enzymes were used 
in this experiment and the reaction components varied can be found 
in Supplementary Fig. 35. We first performed a screen of 21 reaction 
conditions to map out the relationship between all tested variables 
and malate production. Final reactions contained 20 mM sodium 
phosphate buffer pH 7.4, 10 mM MgCl2, 50 µM TPP, 1 mM glyoxylate, 
50 mM formaldehyde and 0.5 µM Ecol Mls. The concentrations of 
remaining enzymes, CoA and NAD+ varied between each reaction 
condition. Three models were then fit as described above; however, 
because there was no measured zero-malate condition, we included 
only a single stepwise model. The stepwise optimized conditions 
were 0.2 mM CoA, 0.5 mM NAD+, 5 µM acrf, 5 µM acrg, 2 µM oxc, 20 µM 
pk and 0.01 µM pta. The SVM-optimized conditions were 0.78 mM 
CoA, 2.19 mM NAD+, 5 µM acrf, 5 µM acrg, 15.5 µM oxc, 20 µM pk and 
0.384 µM pta. These reactions were set up identically to the DSD 
screen, and an additional experiment was run using 20 mM formal-
dehyde to examine potential inhibitory effects.

Cofactor regeneration to improve pathway activity
Using the DSD-optimized conditions with formate as a substrate, 
we then added cofactor regeneration enzymes for ATP and NADH. 
Final reaction conditions were the same as above with two additional 
polyphosphate kinases (Rmel ppk1 and Ajoh ppk2) added at 0.4 or 
2 µM and an additional formate dehydrogenase (P101 fdh) added at 
1 or 6 µM. Polyphosphate (adjusted to pH 7 with KOH) was added at a 
final concentration of 10 mM (phosphate equivalents), and 13C-sodium 
formate was increased to 100 mM. Reactions were performed in tripli-
cate at 15 µl and incubated for 4 h.

Metabolic proofreading to improve pathway activity
After determining cofactor regeneration enzyme conditions, we 
wanted to test whether adding in a recently engineered formyl-phos-
phate reductase (fpr), DaArgC3, could improve pathway activity21. 
Earlier experiments suggested that pta could be exhibiting potential 
side activity with formyl-CoA and producing formyl-Pi, a dead-end 
metabolite for ReForm. We hypothesized that adding in fpr could 
reduce the produced formyl-Pi into formaldehyde to introduce the 
wasted metabolite back into the pathway. Using the conditions from 
the cofactor regeneration screen (2 µM of ppk1 and ppk2 and 1 µM of 
fdh) as the base reaction, we added 0.5, 1 or 5 µM of fpr. Reactions were 
performed in triplicate at 15 µl and incubated for 4 h.

Reform pathway assessment with time using different  
C1 substrates
The metabolic proofreading strategy did not provide any quantifiable 
benefit using fpr under the conditions tested, so we moved forward 
using the optimized DSD conditions (with cofactor regeneration for 
formate as a substrate) without fpr for further testing of ReForm. 
With formate as a substrate, final reaction conditions were 20 mM 
sodium phosphate buffer pH 7.4, 2 mM ATP, 4 mM NADH, 10 mM 
MgCl2, 1 mM CoA, 50 µM TPP, 2 mM glyoxylate, 100 mM 13C-sodium 
formate, 10 mM polyphosphate, 5 U ml−1 pyrophosphatase (Sigma-
Aldrich I5907), 2 µM acs, 5 µM acrf, 5 µM acrg, 20 µM oxc, 20 µM pk, 
0.01 µM pta, 0.5 µM mls, 2 µM ppk1, 2 µM ppk2 and 1 µM fdh. The same 
conditions were used with formate derived electrochemically from 
CO2 as a substrate, except that a final concentration of 8 mM formate 
(12C) was used. Given that formate was produced electrochemically 
at a concentration of 42 mM, this accounted for ~20% v/v of the reac-
tion. Specifically, formate was first produced in isolation using the 
electrochemical reduction catalyst. This formate was neutralized by 
the addition of HCl to a pH of 7. No additional purification or cleanup 

steps were performed; we refer to this as crude formate. This formate 
was then added to a separate reaction vessel containing necessary 
enzymes and cofactors.

With formaldehyde as a substrate, final reaction conditions were 
20 mM sodium phosphate buffer pH 7.4, 2.19 mM NAD+, 10 mM MgCl2, 
0.78 mM CoA, 50 µM TPP, 2 mM glyoxylate, 20 mM formaldehyde, 
5 µM acrf, 5 µM acrg, 15.5 µM oxc, 20 µM pk, 0.384 µM pta and 0.5 µM 
mls. Reactions were performed in triplicate at 20 µl with time points as 
follows (hours): 0, 0.17, 0.33, 0.5, 0.75, 1, 1.5, 2, 3, 6, 10, 18, 24, 36 and 48. 
The same reaction conditions were used with methanol as a substrate 
with the following exceptions. Final reactions additionally contained 
300 U ml−1 catalase (Sigma-Aldrich C1345), 1 U ml−1 alcohol oxidase 
(Sigma-Aldrich A2404) and 20 mM methanol.

Calculation of pathway metrics
All rates (steady-state productivity, specific productivity and CO2 
fixation rate) were calculated using the optimized ReForm pathway 
results shown in Fig. 4c, where formate is derived from the electro-
chemical reduction of CO2. Malate (and equivalently acetyl-CoA) 
synthesis rates can be optimistically calculated from the steady-state 
portion of the pathway between 0 h and 6 h (280 µM malate in 6-h 
yields) or more conservatively by taking the highest yield at 24 h 
(607 µM malate in 24 h). We additionally consider the spatially and 
temporally separate electrochemical module that reduces CO2 to for-
mate, which ran for 1 h total (280 µM malate in 7 h yields 40.1 µM h−1 
or 668 nM min−1 and 607 µM malate in 25 h yields 24.3 µM h−1 or 
404 nM min−1). We report 40.1 µM h−1 as the steady-state productivity 
in Supplementary Table 1. The total enzyme loading for this reaction 
was 4.073 mg protein (Supplementary Table 9), which gives a spe-
cific productivity of 9.8 µM h−1 per milligram of protein. The specific 
productivity of CO2 equivalents assimilated was calculated using 
this value, taking into account that for every molecule of malate 
(or acetyl-CoA) produced, two molecules of CO2 equivalents (for-
mate) are assimilated. We also include these values calculated for 
other state-of-the-art synthetic CO2-fixing pathways (the CETCH 
cycle and the THETA cycle). Quantitative comparison of these values 
can be difficult, but we believe it is important to holistically assess 
how each pathway functions, along with their inherent advantages 
and disadvantages.

Catalyst preparation and electrochemical reduction of CO2

All chemicals used for electrolytes, catalyst synthesis and electrode 
preparation, including iridium(III) chloride hydrate (IrCl3∙xH2O, 
99.9%), tin (IV) oxide (SnO2, nanopowder, ≤100 nm) and potassium 
bicarbonate (KHCO3, 99.7%), were purchased from Sigma-Aldrich 
and used without any further treatments. Nafion 117 membrane and 
titanium felt were purchased from the Fuel Cell Store. In a typical 
procedure, 20 mg SnO2 and 60 μl Nafion perfluorinated resin solu-
tion were stirred and sonicated in 4 ml absolute ethanol to form the 
catalyst ink. Then, 4 ml of the ink was sprayed onto the gas diffusion 
layer (Freudenberg H23C3) with a SnO2 loading of 1 mg cm−2. All elec-
trochemical experiments were performed in an MEA electrolyzer 
(SKU: 68732; Dioxide Materials), with a gasket to control the active 
area of 1 cm2 accessed with a serpentine channel, unless otherwise 
specified. A proton exchange membrane (Nafion 117) was sandwiched 
between the cathode and titanium felt-supported iridium oxide 
(IrO2/Ti) anode. The IrO2/Ti anode was fabricated according to a 
reported method62 with slight modifications. Unless otherwise speci-
fied, the anode was circulated with 0.5 M KHCO3 electrolyte at a rate 
of 10 ml min−1 with a peristaltic pump and with silicone Shore A50 
tubing. Humidified CO2 was fed into the cathode at a rate of 40 sccm 
using an accurate mass flow controller. The cathodic product is col-
lected in 10 ml of deionized water. The volume of anolyte used was 
20 ml. Electrochemical measurements were carried out using an 
Autolab PGSTAT204 in an amperostatic mode and a current booster 
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(10 A). Unless otherwise stated, at the end of 1 h of electrolysis, a 
sample of cathodic product and a sample of anolyte were extracted 
for liquid product analysis. Cathodic products and anolyte samples 
were identified by 1H NMR spectroscopy (600 MHz, Agilent DD2 NMR 
Spectrometer) using dimethyl sulfoxide as an internal standard and 
water suppression techniques.

Data collection and analysis
All statistical information provided in this Article is derived from n = 3 
independent experiments unless otherwise noted in the text or figure 
legends. Error bars represent 1 standard deviation (s.d.) of the mean 
derived from these experiments. Data analysis and figure generation 
were conducted using Excel Version 2304, ChimeraX Version 1.5, Graph-
Pad Prism Version 9.5.0 and Python 3.9. Data collected on the BioTek 
Synergy H1 Microplate Reader were analyzed using Gen5 Version 2.09.2.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All data are available in the Article or its Supplementary Information. 
Source data are provided with this paper. Atomic structures reported 
in this Article are deposited to the Protein Data Bank under accession 
codes 9CD3 and 9CD4. The cryo-EM data were deposited to the Electron 
Microscopy Data Bank under EMD-45461 and EMD-45462.
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